Skip to main content

Advertisement

Log in

Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia

  • PERSPECTIVE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Microglia are resident mononuclear phagocytes within the CNS parenchyma that intimately interact with neurons and astrocytes to remodel synapses and extracellular matrix. We briefly review studies elucidating the molecular pathways that underlie microglial surveillance, activation, chemotaxis, and phagocytosis; we additionally place these studies in a clinical context. We describe and validate an inexpensive and simple approach to obtain enriched single cell suspensions of quiescent parenchymal and perivascular microglia from the mouse cerebellum and hypothalamus. Following preparation of regional CNS single cell suspensions, we remove myelin debris, and then perform two serial enrichment steps for cells expressing surface CD11b. Myelin depletion and CD11b enrichment are both accomplished using antigen-specific magnetic beads in an automated cell separation system. Flow cytometry of the resultant suspensions shows a significant enrichment for CD11b(+)/CD45(+) cells (perivascular microglia) and CD11b(+)/CD45(-) cells (parenchymal microglia) compared to starting suspensions. Of note, cells from these enriched suspensions minimally express Aif1 (aka Iba1), suggesting that the enrichment process does not evoke significant microglial activation. However, these cells readily respond to a functional challenge (LPS) with significant changes in the expression of molecules specifically associated with microglia. We conclude that methods employing a combination of magnetic-bead based sorting and flow cytometry produce suspensions highly enriched for microglia that are appropriate for a variety of molecular and cellular assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

chemokine C-C motif ligand 1:

CCL1, aka SCYA1, I-309, TCA3, P500, SISe

chemokine C-C motif ligand 2:

CCL2, aka MCP-1, MCP1, GDCF-2, HC11, HSMCR30, MCAF, SCYA2, SMC-CF

chemokine C-C motif ligand 3:

CCL3, aka G0S19-1, LD78ALPHA, MIP-1α, MIP1A, SCYA3

chemokine C-C motif ligand 4:

CCL4, aka ACT2, AT744.1, G-26, HC21, LAG-1, LAG1, MIP-1β, MIP1B, MIP1B1, SCYA2, SCYA4

chemokine C-C motif ligand 5:

CCL5, aka D17S136E, RANTES, SCYA5, SIS-delta, SISd, TCP228, eoCP

complement 5a receptor:

C5AR1, aka CD88

cAMP:

cyclic AMP

cluster of differentiation 47:

CD47, aka IAP, MER6, OA3

cluster of differentiation 200:

CD200, aka MOX1, MOX2, MRC, OX-2

cluster of differentiation 200 receptor:

CD200R1, aka CD200R, HCRTR2, MOX2R, OX2R

CX3CL1:

Chemokine C-X3-C motif ligand, aka fractalkine, neurotactin, ABCD-3, C3Xkine, CXC3, CXC3C, NTN, NTT, SCYD1

CX3CR1:

CX3C chemokine receptor 1; aka fractalkine receptor, CCRL1, CMKBRL1, CMKDR1, GPR13, GPRV28, V28

Dock180, aka Dock1:

Dedicator of cytokinesis 180

Dok1, aka P62DOK:

Docking protein 1

Dok2, aka p56DOK, p56dok-2:

Docking protein 2

ERK1/2:

Extracellular signal-regulated protein kinases 1 and 2

Fcgr1:

High affinity immunoglobulin gamma Fc receptor I

Fcgr3:

Low affinity immunoglobulin gamma Fc region receptor III

ITAM:

Immunoreceptor tyrosine-based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

IP3 :

Inositol triphosphate

IL-1:

Interleukin 1

MMP3:

Matrix metalloproteinase-3

MFG-e8:

Milk fat globule-EGF factor 8 protein

PLC:

Phospholipase C

NFκB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PTPN6, aka HCP, HCPH, HPTP1C, PTP-1C, SH-PTP1, SHP-1, SHP-1 L, SHP1:

Protein tyrosine phosphatase, non-receptor type 6

PTPN11, aka BPTP3, CFC, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2:

Protein tyrosine phosphatase, non-receptor type 11

PKA:

Protein kinase A

PTK:

Protein tyrosine kinase

P2RX4, aka P2X4, P2X4R:

Purinergic receptor P2X, ligand-gated ion channel, 4

P2RY6, aka P2Y6:

Pyrimidinergic receptor P2Y, G-protein coupled, 6

P2RY12, aka ADPG-R, BDPLT8, HORK3, P2T(AC), P2Y(12)R, P2Y(AC), P2Y(ADP), P2Y(cyc), P2Y12, SP1999:

Purinergic receptor P2Y, G-protein coupled, 12

Rac1:

Ras-related C3 botulinum toxin substrate 1

SIRPα, aka SIRP, SHPS1, CD172A, PTPNS1, BIT, MFR, MYD-1, P84:

Signal regulatory protein α

Syk:

Spleen tyrosine kinase

Trem2:

Triggering receptor expressed on myeloid cells 2

Tyrobp:

TYRO protein tyrosine kinase-binding protein

VASP:

Vasodilator-stimulated phosphoprotein

References

  • Abd‐El‐Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41(2):222–237

    Article  PubMed  Google Scholar 

  • Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW (2007) Actin-binding proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem 55(7):687–700

    Article  CAS  PubMed  Google Scholar 

  • Albert ML, Kim JI, Birge RB (2000) αvβ5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2(12):899–905

    Article  CAS  PubMed  Google Scholar 

  • Ashwell K (1990) Microglia and cell death in the developing mouse cerebellum. Dev Brain Res 55(2):219–230

    Article  CAS  Google Scholar 

  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23(7):2665–2674

    CAS  PubMed  Google Scholar 

  • Barres BA, Silverstein BE, Corey DR, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1(9):791–803

    Article  CAS  PubMed  Google Scholar 

  • Bedi SS, Smith P, Hetz RA, Xue H, Cox CS (2013) Immunomagnetic enrichment and flow cytometric characterization of mouse microglia. J Neurosci Methods 219(1):176–182

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano‐Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278

    Article  CAS  PubMed  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee J-C, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924

    Article  CAS  PubMed  Google Scholar 

  • Chan A, Magnus T, Gold R (2001) Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system. Glia 33(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1993) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149(8):2736–2741

    Google Scholar 

  • Corriden R, Insel PA (2012) New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 8(3):587–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438(7070):1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Cross AK, Woodroofe MN (1999) Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res 55(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  CAS  PubMed  Google Scholar 

  • Diaz C, Schroit AJ (1996) Role of translocases in the generation of phosphatidylserine asymmetry. J Membr Biol 151(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S, Shioda S, Aruga T (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7(1):41

    Article  PubMed Central  PubMed  Google Scholar 

  • Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2(1):29

    Article  PubMed Central  PubMed  Google Scholar 

  • Färber K, Kettenmann H (2005) Physiology of microglial cells. Brain Res Rev 48(2):133–143

    Article  PubMed  Google Scholar 

  • Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154(9):4309–4321

    CAS  PubMed  Google Scholar 

  • Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF (2006) Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 151(2):121–130

    Article  PubMed  Google Scholar 

  • Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC (2012) MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 32(8):2657–2666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49(3):1422–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fulton BP, Burne JF, Raff MC (1992) Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. J Neurosci 12(12):4816–4833

    CAS  PubMed  Google Scholar 

  • Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg P-A, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S (2011) Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes. J Neuroinflamm 8:24

    Article  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    CAS  PubMed  Google Scholar 

  • Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155

    Article  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Harms AS, Lee JK, Nguyen TA, Chang J, Ruhn KM, Treviño I, Tansey MG (2012) Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 60(2):189–202

    Article  PubMed Central  PubMed  Google Scholar 

  • Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranc MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayes GM, Woodroofe MN, Cuzner ML (1988) Characterisation of microglia isolated from adult human and rat brain. J Neuroimmunol 19(3):177–189

    Article  CAS  PubMed  Google Scholar 

  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519

    Article  CAS  PubMed  Google Scholar 

  • Hendrickx DAE, Schuurman KG, van Draanen M, Hamann J, Huitinga I (2014) Enhanced uptake of multiple sclerosis-derived myelin by THP-1 macrophages and primary human microglia. J Neuroinflammation 11:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    CAS  PubMed  Google Scholar 

  • Huettner JE, Baughman RW (1986) Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6(10):3044–3060

    CAS  PubMed  Google Scholar 

  • Husemann J, Loike JD, Anakov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neuropathology: their role on microglia and other cells of the nervous system. Glia 40(2):195–205

    Article  PubMed  Google Scholar 

  • Hwang D (2013) Role of oxidative stress in parkinson’s disease. Exp Neurobiol 22(1):11–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A (1997) A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386:181–186

    Article  CAS  PubMed  Google Scholar 

  • Lacy M, Jones J, Whittemore SR, Haviland DL, Wetsel RA, Barnum SR (1995) Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 61(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chung CY (2009) Role of VASP phosphorylation for the regulation of microglia chemotaxis via the regulation of focal adhesion formation/maturation. Mol Cell Neurosci 42(4):382–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Liu W, Dickson DW, Brosnan CF, Berman JW (1993) Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 150(7):2659–2667

    CAS  PubMed  Google Scholar 

  • Lee YB, Nagai A, Kim SU (2002) Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res 69(1):94–103

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Hollingsworth R, Kwon HY, Lee N, Chung CY (2012) β‐arrestin 2‐dependent activation of ERK1/2 is required for ADP‐induced paxillin phosphorylation at Ser83 and microglia chemotaxis. Glia 60(9):1366–1377

    Article  PubMed Central  PubMed  Google Scholar 

  • Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32(3):946–952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Tang Y, Feng J (2011) Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system. Life Sci 89(5):141–146

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Louboutin JP, Strayer DS (2013) Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord-Drug Targets 12(6):815–829

    Article  CAS  PubMed  Google Scholar 

  • Lyons PA, Koukoulaki M, Hatton A, Doggett K, Woffendin HB, Chaudhry AN, Smith KG (2007) Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification. BMC Genomics 8(1):64–75

    Article  PubMed Central  PubMed  Google Scholar 

  • Maneu V, Yáñez A, Murciano C, Molina A, Gil ML, Gozalbo D (2011) Dectin‐1 mediates in vitro phagocytosis of Candida albicans yeast cells by retinal microglia. FEMS Immunol Med Microbiol 63(1):148–150

    Article  CAS  PubMed  Google Scholar 

  • Marek R, Caruso M, Rostami A, Grinspan JB, Sarma JD (2008) Magnetic cell sorting: a fast and effective method of concurrent isolation of high purity viable astrocytes and microglia from neonatal mouse brain tissue. J Neurosci Methods 175(1):108–118

    Article  PubMed  Google Scholar 

  • Mashima R, Hishida Y, Tezuka T, Yamanashi Y (2009) The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 232(1):273–285

    Article  CAS  PubMed  Google Scholar 

  • Master Z, Tran J, Bishnoi A, Chen SH, Ebos JM, Van Slyke P, Kerbel RS, Dumont DJ (2003) Dok-R binds c-Abl and regulates Abl kinase activity and mediates cytoskeletal reorganization. J Biol Chem 278(32):30170–30179

    Article  CAS  PubMed  Google Scholar 

  • McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, Solito E (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185(10):6317–6328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller AM, Stella N (2009) Microglial cell migration stimulated by ATP and C5a involve distinct molecular mechanisms: quantification of migration by a novel near‐infrared method. Glia 57(8):875–883

    Article  PubMed Central  PubMed  Google Scholar 

  • Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H (1997) Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 17(2):615–624

    PubMed  Google Scholar 

  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals, 8th edition. Washington (DC): National Academies Press (US). ISBN-13: 978-0-309-15400-0

  • Neumann H, Takahashi K (2007) Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 184(1):92–99

    Article  CAS  PubMed  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20(6):714–716

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Nolte C, Moller T, Walter T, Kettenmann H (1996) Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73(4):1091–1107

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP‐induced microglial chemotaxis. Glia 55(6):604–616

    Article  PubMed  Google Scholar 

  • Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15(8):1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Patel J, Channon KM, McNeill E (2013) The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediat Inflamm. Article ID 459520, 12 pages, 2013. doi:10.1155/2013/459520

  • Polazzi E, Gianni T, Contestabile A (2001) Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia 36(3):271–280

    Article  CAS  PubMed  Google Scholar 

  • Pul R, Chittappen KP, Stangel M (2013) Quantification of microglial phagocytosis by a flow cytometer-based assay. In: Microglia (pp. 121–127). Humana Press

  • Reynolds CP, Black AT, Saur JW, Seeger RC, Ugelstadd J, Woody JN (1985) An immunomagnetic flow system for selective depletion of cell populations from marrow. Transplant Proc 17:434–436

    Google Scholar 

  • Romero-Sandoval EA, Horvath R, Landry RP, DeLeo JA (2009) Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol Pain 5(1):25

    Article  PubMed Central  PubMed  Google Scholar 

  • Rotshenker S, Reichert F, Gitik M, Haklai R, Elad‐Sfadia G, Kloog Y (2008) Galectin‐3/MAC‐2, Ras and PI3K activate complement receptor‐3 and scavenger receptor‐AI/II mediated myelin phagocytosis in microglia. Glia 56(15):1607–1613

    Article  PubMed  Google Scholar 

  • Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o‐coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44(3):242–250

    Article  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Stevens B (2013) The “quad‐partite” synapse: microglia‐synapse interactions in the developing and mature CNS. Glia 61(1):24–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Sedgwick JD, Schwender S, Imrich H, Dörries R, Butcher GW, Ter Meulen V (1991) Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 88(16):7438–7442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL (2005) Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 315(2):828–838

    Article  CAS  PubMed  Google Scholar 

  • Škuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C, Stangel M (2011) CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol 270(2):164–171

    Article  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SWM, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Suemitsu S, Watanabe M, Yokobayashi E, Usui S, Ishikawa T, Matsumoto Y, Yamada N, Okamoto M, Kuroda S (2010) Fcγ receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 166(3):819–831

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Miyamoto A, Nabekura J (2013) Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209–217

    Article  CAS  PubMed  Google Scholar 

  • Woodroofe MN, Sarna GS, Wadhwa M, Hayes GM, Loughlin AJ, Tinker A, Cuzner ML (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 33(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, Song Y, Jenmalm M, Gorman D, McClanahan T, Liu M-R, Brown MH, Sedgwick JD, Phillips JH, Barclay AN (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171(6):3034–3046

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12(9):1005–1015

    CAS  PubMed  Google Scholar 

  • Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H, Hayashi Y, Matozaki T, Takeda K, Akira S, Kasuga M (2002) Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem 277(42):39833–39839

    Article  CAS  PubMed  Google Scholar 

  • Zhang GX, Li J, Ventura E, Rostami A (2002) Parenchymal Microglia of Naı̈ve Adult C57BL/6J Mice Express High Levels of B7. 1, B7. 2, and MHC Class II. Exp Mol Pathol 73(1):35–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health – National Institute on Aging (NIH-NIA) AG031158 (SJB), the Medical Student Training in Aging Research (MSTAR) program (TAV, CDR), and startup funds from the University of Nebraska Medical Center (SJB). We thank Tammy L. Kielian, Ph.D. for reviewing the draft manuscript; Megan L. Michalak, Victoria B. Smith, and Charles A. Kuszynski, Ph.D. of the UNMC cell analysis facility for their assistance performing the flow cytometry studies.

Conflict of Interest

The authors declare no conflicts of interest for this work.

Author Contributions

All studies conceived, analyzed, reported by SJB. TAV, CDR, TAH performed and analyzed flow cytometry and in vitro microglial studies. TAH, JA collected and analyzed DIC and confocal microscopy images demonstrating microglial enrichment. TAV, TAH, JA assisted in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Bonasera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volden, T.A., Reyelts, C.D., Hoke, T.A. et al. Validation of Flow Cytometry and Magnetic Bead-Based Methods to Enrich CNS Single Cell Suspensions for Quiescent Microglia. J Neuroimmune Pharmacol 10, 655–665 (2015). https://doi.org/10.1007/s11481-015-9628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9628-7

Keywords

Navigation