Skip to main content

Advertisement

Log in

Identification of Novel MicroRNA Signatures Linked to Experimental Autoimmune Myasthenia Gravis Pathogenesis: Down-Regulated miR-145 Promotes Pathogenetic Th17 Cell Response

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Emerging evidence demonstrates that miRNAs, a new family of key mRNA regulatory molecules, have crucial roles in controlling and modulating immunity. Their contribution to myasthenia gravis (MG), a T cell-dependent, antibody-mediated nervous system autoimmune disease, has not been thoroughly investigated. In the present study, using a highly sensitive microarray-based approach, we identified 11 miRNAs with differential expression between Peripheral Blood Mononuclear Cells (PBMC) from experimental autoimmune MG (EAMG) rats and control rats. miR-145 is one of the most significantly down-regulated miRNAs in PBMC from EAMG rats. Down-regulation of miR-145 expression was confirmed in PBMC and CD4+CD25- T cells (T effector cells) from both EAMG rats and MG patients by real-time PCR. Bioinformatics target prediction identified two crucial immune-related molecules-CD28 and NFATc1, as putative targets of miR-145. Furthermore, miR-145 inhibited CD28 and NFATc1 expression by directly targeting their 3′-UTRs, which was abolished by mutation of the miR-145 and CD28/NFATc1 binding sites. In vitro up-regulation of miR-145 in CD4+ T cells can significantly reduce CD28 protein levels accompanied by decreased proliferative response. In a dendritic cell (DC)-T cell coculture system, overexpression of miR-145 in AChR-specific CD4+ T cells suppresses NFATc1 expression and T Helper 17 cells level. Finally, we observed that administration of lentiviral-miR-145 decreased the severity of ongoing, established EAMG with decreased IL-17 production, and also decreased serum anti-AChR IgG levels. Our studies provide an important new insight into the pathogenesis of EAMG and MG, which may open a new perspective for the development of effective gene therapy for EAMG/MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelsadik A, Trad A (2011) Toll-like receptors on the fork roads between innate and adaptive immunity. Hum Immunol 72:1188–1193

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  PubMed  CAS  Google Scholar 

  • Baggi F, Annoni A, Ubiali F, Milani M, Longhi R, Scaioli W, Cornelio F, Mantegazza R, Antozzi C (2004) Breakdown of tolerance to a self-peptide of acetylcholine receptor alpha-subunit induces experimental myasthenia gravis in rats. J Immunol 172(4):2697–2703

    PubMed  CAS  Google Scholar 

  • Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, Campagnolo DI, Vollmer TL, Ransohoff RM, Shi FD (2008) CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol 38(7):1877–1888

    Article  PubMed  CAS  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, Novellino L, Cornelio F, Mantegazza R (2005) Increased toll-like receptor 4 expression in thymus of myasthenic patients with thymitis and thymic involution. Am J Pathol 167(1):129–139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bopp T, Palmetshofer A, Serfling E, Heib V, Schmitt S, Richter C, Klein M, Schild H, Schmitt E, Stassen M (2005) NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J Exp Med 201(2):181–187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caraher EM, Parenteau M, Gruber H, Scott FW (2000) Flow cytometric analysis of intracellular IFN-gamma, IL-4 and IL-10 in CD3(+)4(+) T-cells from rat spleen. J Immunol Methods 244(1–2):29–40

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Qiu S, Jiang L, Zhang A, Bao W, Liu P, Liu J (2013) MiR-320a is downregulated in patients with myasthenia gravis and modulates inflammatory cytokines production by targeting mitogen-activated protein kinase 1. J Clin Immunol 33(3):567–576

    Article  PubMed  CAS  Google Scholar 

  • Collison A, Mattes J, Plank M, Foster PS (2011) Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol 128(1):160–167.e4

    Article  PubMed  CAS  Google Scholar 

  • Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dai R, Zhang Y, Khan D, Heid B, Caudell D, Crasta O, Ahmed SA (2010) Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One 5(12):e14302

    Article  PubMed  PubMed Central  Google Scholar 

  • Drachman DB (1996) Immunotherapy in neuromuscular disorders: current and future strategies. Muscle Nerve 19(10):1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10(12):1252–1259

    Article  PubMed  CAS  Google Scholar 

  • Elson CJ, Barker RN (2000) Helper T cells in antibody-mediated, organ-specific autoimmunity. Curr Opin Immunol 12(6):664–669

    Article  PubMed  CAS  Google Scholar 

  • Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14

    Article  PubMed  CAS  Google Scholar 

  • Feferman T, Aricha R, Menon R, Souroujon MC, Berrih-Aknin S, Fuchs S (2007) DNA microarray in search of new drug targets for myasthenia gravis. Ann N Y Acad Sci 1107:111–117

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Rodriguez J, Sahu N, Handon R, Davidson TS, Anderson SM, Kirby MR, August A, Schwartzberg PL (2009) Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity 31(4):587–597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Howland KC, Ausubel LJ, London CA, Abbas AK (2000) The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol 164(9):4465–4470

    PubMed  CAS  Google Scholar 

  • Hughes BW, Moro De Casillas ML, Kaminski HJ (2004) Pathophysiology of myasthenia gravis. Semin Neurol 24(1):21–30

    Article  PubMed  Google Scholar 

  • Iborra M, Bernuzzi F, Invernizzi P, Danese S (2012) MicroRNAs in autoimmunity and inflammatory bowel disease: Crucial regulators in immune response. Autoimmun Rev 11(5):305–314

    Article  PubMed  CAS  Google Scholar 

  • Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55(1):16–23

    Article  PubMed  Google Scholar 

  • Kong QF, Sun B, Wang GY, Zhai DX, Mu LL, Wang DD, Wang JH, Li R, Li HL (2009) BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol 39(3):800–809

    Article  PubMed  CAS  Google Scholar 

  • Kramer JM, Gaffen SL (2007) Interleukin-17: a new paradigm in inflammation, autoimmunity, and therapy. J Periodontol 78(6):1083–1093

    Article  PubMed  Google Scholar 

  • Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, Pan T, Zhang Y, Cao X, Wang Q (2013) MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem 288(11):7956–7967

    Article  PubMed  CAS  Google Scholar 

  • Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    Article  PubMed  CAS  Google Scholar 

  • Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    Article  PubMed  CAS  Google Scholar 

  • Liu XK, Lin X, Gaffen SL (2004) Crucial role for nuclear factor of activated T cells in T cell receptor-mediated regulation of human interleukin-17. J Biol Chem 279(50):52762–52771

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E (2009) miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A 106(37):15819–15824

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lohr J, Knoechel B, Wang JJ, Villarino AV, Abbas AK (2006) Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med 203(13):2785–2791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Love TM, Moffett HF, Novina CD (2008) Not miR-ly small RNAs: big potential for microRNAs in therapy. J Allergy Clin Immunol 121(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002

    Article  PubMed  CAS  Google Scholar 

  • Lu MC, Lai NS, Chen HC, Yu HC, Huang KY, Tung CH, Huang HB, Yu CL (2013) Decreased microRNA(miR)-145 and increased miR-224 expression in T cells from patients with systemic lupus erythematosus involved in lupus immunopathogenesis. Clin Exp Immunol 171(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Mattes J, Collison A, Plank M, Phipps S, Foster PS (2009) Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A A106(44):18704–18709

    Article  Google Scholar 

  • Miao CG, Yang YY, He X, Xu T, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J (2013) New advances of microRNAs in the pathogenesis of rheumatoid arthritis, with a focus on the crosstalk between DNA methylation and the microRNA machinery. Cell Signal 25(5):1118–1125

    Google Scholar 

  • Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187(5):2213–2221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M, Chan EK (2013) Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol 190(3):1250–1263

    Article  PubMed  CAS  Google Scholar 

  • Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58(5):1284–1292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Osserman KE, Genkins G (1971) Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt Sinai J Med 38(6):497–537

    PubMed  CAS  Google Scholar 

  • Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10(4):R101

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter CM, Clipstone NA (2002) Sustained NFAT signaling promotes a Th1-like pattern of gene expression in primary murine CD4+ T cells. J Immunol 168(10):4936–4945

    PubMed  CAS  Google Scholar 

  • Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517

    Google Scholar 

  • Roche JC, Capablo JL, Larrad L, Gervas-Arruga J, Ara JR, Sánchez A, Alarcia R (2011) Increased serum interleukin-17 levels in patients with myasthenia gravis. Muscle Nerve 44(2):278–280

    Article  PubMed  CAS  Google Scholar 

  • Sachdeva M, Mo YY (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70(1):378–387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252

    Article  PubMed  CAS  Google Scholar 

  • Sheng JR, Li L, Ganesh BB, Vasu C, Prabhakar BS, Meriggioli MN (2006) Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J Immunol 177(8):5296–5306

    PubMed  CAS  Google Scholar 

  • Shi FD, He B, Li H, Matusevicius D, Link H, Ljunggren HG (1998) Differential requirements for CD28 and CD40 ligand in the induction of experimental autoimmune myasthenia gravis. Eur J Immunol 28(11):3587–3593

    Article  PubMed  CAS  Google Scholar 

  • Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R (2007) Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282(45):32582–32590

    Article  PubMed  CAS  Google Scholar 

  • Sonkoly E, Wei T, Janson PC, Sääf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2(7):e610

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent A, Palace J, Hilton-Jones D (2001) Myasthenia gravis. Lancet 357(9274):2122–2128

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, Conti-Fine BM (2007) C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol 178(11):7072–7080

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, Zhou WB, Li J (2013) Possible involvement of toll-like receptors in the pathogenesis of myasthenia gravis. Inflammation 36(1):121–130

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136(1):26–36

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Yamahara K, Homma K, Suzuki S, Fujii S, Morizane R, Monkawa T, Matsuzaki Y, Kangawa K, Itoh H (2011) The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 219(2):468–474

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 6(7):e21679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Yang H, Xiao B, Wu M, Zhou W, Li J, Li G, Christadoss P (2009) Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol 46(4):657–667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (81072465), Natural Science Fund of the Educational Committee of Jiangsu Province (10KJD320003), Special foundation of president of the Xuzhou Medical College (2010KJZ01), Key medical talents fund of Jiangsu Province (H201130), Jiangsu Province ordinary university postgraduate research innovation fund (CXLX11_0734, CXLX13_992).

Disclosures

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiguo Dong or Yong Zhang.

Additional information

Jiao Wang and Shuangshuang Zheng contributed equally to this work.

Ruiguo Dong is a co-corresponding author. Yong Zhang: to whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zheng, S., Xin, N. et al. Identification of Novel MicroRNA Signatures Linked to Experimental Autoimmune Myasthenia Gravis Pathogenesis: Down-Regulated miR-145 Promotes Pathogenetic Th17 Cell Response. J Neuroimmune Pharmacol 8, 1287–1302 (2013). https://doi.org/10.1007/s11481-013-9498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9498-9

Keywords

Navigation