Skip to main content

Advertisement

Log in

Clozapine Protects Dopaminergic Neurons from Inflammation-Induced Damage by Inhibiting Microglial Overactivation

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests a possible involvement of neuroinflammation in some psychiatric disorders, and also pharmacological reports indicate that anti-inflammatory effects are associated with therapeutic actions of psychoactive drugs, such as anti-depressants and antipsychotics. The purpose of this study was to explore whether clozapine, a widely used antipsychotic drugs, displays anti-inflammatory and neuroprotective effects. Using primary cortical and mesencephalic neuron-glia cultures, we found that clozapine was protective against inflammation-related neurodegeneration induced by lipopolysaccharide (LPS). Pretreatment of cortical or mesencephalic neuron–glia cultures with clozapine (0.1 or 1 μM) for 24 h attenuated LPS-induced neurotoxicity. Clozapine also protected neurons against 1-methyl-4-phenylpyridinium+ (MPP+)-induced neurotoxicity, but only in cultures containing microglia, indicating an indispensable role of microglia in clozapine-afforded neuroprotection. Further observation revealed attenuated LPS-induced microglial activation in primary neuron-glia cultures and in HAPI microglial cell line with clozapine pretreatment. Clozapine ameliorated the production of microglia-derived superoxide and intracellular reactive oxygen species (ROS), as well as the production of nitric oxide and TNF-α following LPS. In addition, the protective effect of clozapine was not observed in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX), a key enzyme for superoxide production in immune cells. Further mechanistic studies demonstrated that clozapine pretreatment inhibited LPS-induced translocation of cytosolic subunit p47phox to the membrane in microglia, which was most likely through inhibiting the phosphoinositide 3-kinase (PI3K) pathway. Taken together, this study demonstrates that clozapine exerts neuroprotective effect via the attenuation of microglia activation through inhibition of PHOX-generated ROS production and suggests potential use of antipsychotic drugs for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams RA, Bauer J, Flick MJ, Sikorski SL, Nuriel T, Lassmann H, Degen JL, Akassoglou K (2007) The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 204:571–582

    Article  PubMed  CAS  Google Scholar 

  • Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE (1990) The hippocampus and parahippocampus in schizophrenia, suicide, and control brains. Arch Gen Psychiatry 47:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Anderson KE, Boyle KB, Davidson K, Chessa TA, Kulkarni S, Jarvis GE, Sindrilaru A, Scharffetter-Kochanek K, Rausch O, Stephens LR, Hawkins PT (2008) CD18-dependent activation of the neutrophil NADPH oxidase during phagocytosis of Escherichia coli or Staphylococcus aureus is regulated by class III but not class I or II PI3Ks. Blood 112:5202–5211

    Article  PubMed  CAS  Google Scholar 

  • Araki N, Johnson MT, Swanson JA (1996) A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol 135:1249–1260

    Article  PubMed  CAS  Google Scholar 

  • Babior BM (1999) NADPH oxidase: an update. Blood 93:1464–1476

    PubMed  CAS  Google Scholar 

  • Bai O, Wei Z, Lu W, Bowen R, Keegan D, Li XM (2002) Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawal. J Neurosci Res 69:278–283

    Article  PubMed  CAS  Google Scholar 

  • Baune BT, Eyre H (2010) Anti-inflammatory effects of antidepressant and atypical antipsychotic medication for the treatment of major depression and comorbid arthritis: a case report. J Med Case Reports 4:6

    Article  PubMed  Google Scholar 

  • Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132

    Article  PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  PubMed  CAS  Google Scholar 

  • Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL, Soares MB (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6:903–907

    Article  PubMed  CAS  Google Scholar 

  • Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL, Purohit DP, Haroutunian V, Jones L (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatr 159:59–65

    Article  PubMed  Google Scholar 

  • Dobos N, Korf J, Luiten PG, Eisel UL (2010) Neuroinflammation in Alzheimer’s disease and major depression. Biol Psychiatr 67:503–504

    Article  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    Article  PubMed  Google Scholar 

  • Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY, Holmes AB, Gaffney PR, Coadwell J, Chilvers ER, Hawkins PT, Stephens LR (2001) PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nat Cell Biol 3:679–682

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297

    Article  PubMed  CAS  Google Scholar 

  • Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956

    PubMed  CAS  Google Scholar 

  • Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM, Block M, Hong JS (2008) Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116:593–598

    Article  PubMed  CAS  Google Scholar 

  • Gorlach A, Kietzmann T, Hess J (2002) Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann N Y Acad Sci 973:505–507

    Article  PubMed  Google Scholar 

  • Gross A, Joffe G, Joutsiniemi SL, Nyberg P, Rimon R, Appelberg B (2003) Decreased production of reactive oxygen species by blood monocytes caused by clozapine correlates with EEG slowing in schizophrenic patients. Neuropsychobiology 47:73–77

    Article  PubMed  CAS  Google Scholar 

  • Herken H, Uz E, Ozyurt H, Sogut S, Virit O, Akyol O (2001) Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatr 6:66–73

    Article  CAS  Google Scholar 

  • Hulshoff Pol HE, Schnack HG, Bertens MG, van Haren NE, van der Tweel I, Staal WG, Baare WF, Kahn RS (2002) Volume changes in gray matter in patients with schizophrenia. Am J Psychiatr 159:244–250

    Article  PubMed  Google Scholar 

  • Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS (2004) The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560:115–119

    Article  PubMed  CAS  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatr 156:286–293

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, Ruther E, Emrich HM, Schneider U, Bleich S (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci 17:227–231

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lu XH, Dwyer DS (2005) Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. J Mol Neurosci 27:43–64

    Article  PubMed  CAS  Google Scholar 

  • Mahadik SP, Mukherjee S, Scheffer R, Correnti EE, Mahadik JS (1998) Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry 43:674–679

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  • Moller T (2002) Calcium signaling in microglial cells. Glia 40:184–194

    Article  PubMed  Google Scholar 

  • Munn NA (2000) Microglia dysfunction in schizophrenia: an integrative theory. Med Hypotheses 54:198–202

    Article  PubMed  CAS  Google Scholar 

  • Nair TR, Christensen JD, Kingsbury SJ, Kumar NG, Terry WM, Garver DL (1997) Progression of cerebroventricular enlargement and the subtyping of schizophrenia. Psychiatr Res 74:141–150

    Article  CAS  Google Scholar 

  • Paterson GJ, Ohashi Y, Reynolds GP, Pratt JA, Morris BJ (2006) Selective increases in the cytokine, TNFalpha, in the prefrontal cortex of PCP-treated rats and human schizophrenic subjects: influence of antipsychotic drugs. J Psychopharmacol 20:636–642

    Article  PubMed  CAS  Google Scholar 

  • Qian L, Flood PM, Hong JS (2010) Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 117:971–979

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83:973–983

    Article  PubMed  CAS  Google Scholar 

  • Qing H, Xu H, Wei Z, Gibson K, Li XM (2003) The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP + −induced apoptosis. Eur J Neurosci 17:1563–1570

    Article  PubMed  Google Scholar 

  • Radewicz K, Garey LJ, Gentleman SM, Reynolds R (2000) Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics. J Neuropathol Exp Neurol 59:137–150

    PubMed  CAS  Google Scholar 

  • Reddy RD, Yao JK (1996) Free radical pathology in schizophrenia: a review. Prostaglandins Leukot Essent Fatty Acids 55:33–43

    Article  PubMed  CAS  Google Scholar 

  • Seidel A, Arolt V, Hunstiger M, Rink L, Behnisch A, Kirchner H (1996) Major depressive disorder is associated with elevated monocyte counts. Acta Psychiatr Scand 94:198–204

    Article  PubMed  CAS  Google Scholar 

  • Shao Z, Dyck LE, Wang H, Li XM (2006) Antipsychotic drugs cause glial cell line-derived neurotrophic factor secretion from C6 glioma cells. J Psychiatr Neurosci 31:32–37

    Google Scholar 

  • Shin SY, Choi BH, Ko J, Kim SH, Kim YS, Lee YH (2006) Clozapine, a neuroleptic agent, inhibits Akt by counteracting Ca2+/calmodulin in PTEN-negative U-87MG human glioblastoma cells. Cell Signal 18:1876–1886

    Article  PubMed  CAS  Google Scholar 

  • Song C, Lin A, Kenis G, Bosmans E, Maes M (2000) Immunosuppressive effects of clozapine and haloperidol: enhanced production of the interleukin-1 receptor antagonist. Schizophr Res 42:157–164

    Article  PubMed  CAS  Google Scholar 

  • Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC (2008) Fc gamma R-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 112:3867–3877

    Article  PubMed  CAS  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11 C]PK11195 positron emission tomography study. Biol Psychiatr 64:820–822

    Article  Google Scholar 

  • van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL, Evans AC, Kahn RS (2007) Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 32:2057–2066

    Article  PubMed  Google Scholar 

  • Vieira OV, Botelho RJ, Rameh L, Brachmann SM, Matsuo T, Davidson HW, Schreiber A, Backer JM, Cantley LC, Grinstein S (2001) Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 155:19–25

    Article  PubMed  CAS  Google Scholar 

  • Wierzba-Bobrowicz T, Lewandowska E, Lechowicz W, Stepien T, Pasennik E (2005) Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol 43:81–89

    PubMed  Google Scholar 

  • Yasuda Y, Shinagawa R, Yamada M, Mori T, Tateishi N, Fujita S (2007) Long-lasting reactive changes observed in microglia in the striatal and substantia nigral of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res 1138:196–202

    Article  PubMed  CAS  Google Scholar 

  • Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E, Weidenfeld J (2001) Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology 24:531–544

    Article  PubMed  CAS  Google Scholar 

  • Zarifkar A, Choopani S, Ghasemi R, Naghdi N, Maghsoudi AH, Maghsoudi N, Rastegar K, Moosavi M (2010) Agmatine prevents LPS-induced spatial memory impairment and hippocampal apoptosis. Eur J Pharmacol 634:84–88

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY (2003) Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatr Res 117:85–88

    Article  CAS  Google Scholar 

  • Zhang W, Shin EJ, Wang T, Lee PH, Pang H, Wie MB, Kim WK, Kim SJ, Huang WH, Wang Y, Zhang W, Hong JS, Kim HC (2006) 3-Hydroxymorphinan, a metabolite of dextromethorphan, protects nigrostriatal pathway against MPTP-elicited damage both in vivo and in vitro. FASEB J 20:2496–2511

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Hu X, Wei SJ, Liu J, Gao H, Qian L, Wilson B, Liu G, Hong JS (2008) Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity. J Neuroinflammation 5:21

    Article  PubMed  Google Scholar 

  • Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS (2011) Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 8:3

    Article  PubMed  Google Scholar 

  • Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 98:1982–1987

    Article  PubMed  CAS  Google Scholar 

  • Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A (1992) Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatr 49:195–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Anthony Lockhart for assistance with animal colony management and maintenance of the timed pregnant mice. This research was supported by the Intramural Research Program of the National Institute of Health, the National Institute of Environmental Health Sciences.

Conflict of interest

The authors declare that they have nocompeting interests or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jau-Shyong Hong.

Additional information

This research was supported by the Intramural Research Program of the National Institute of Environmental Health Sciences, National Institute of Health.

Xiaoming Hu and Hui Zhou have equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Zhou, H., Zhang, D. et al. Clozapine Protects Dopaminergic Neurons from Inflammation-Induced Damage by Inhibiting Microglial Overactivation. J Neuroimmune Pharmacol 7, 187–201 (2012). https://doi.org/10.1007/s11481-011-9309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9309-0

Keywords

Navigation