Skip to main content

Advertisement

Log in

The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Potassium ion channels play critical roles in cell function, providing the maintenance of the membrane, repolarization of action potentials, and the regulation of firing frequency. Mutations in genes that interfere with Kv ion channel function cause severe inherited diseases, such as episodic ataxia type 1, deafness, epilepsy, or cardiac arrhythmia. Because of their critical role in the central nervous system, all ion channels are targets for multiple pharmacologically active compounds. Better understanding of the structure and function of Kv channels may eventually contribute to a more effective design of drugs. In this review, we show the recent data about domain organization of eukaryotic potassium voltage-gated ion channels. We are giving special attention to the interaction between the domains and the corresponding conformational changes upon activation of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott GW, Butler MH, Goldstein SA (2006) Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. FASEB J 20(2):293–301, doi:10.1096/fj.05-5070com

    Article  PubMed  CAS  Google Scholar 

  • Adair B, Nunn R, Lewis S, Dukes I, Philipson L, Yeager M (2008) Single particle image reconstruction of the human, recombinant Kv2.1 channel. Biophys J 94(6):2106–2114, doi:10.1529/biophysj.107.118562

    Article  PubMed  CAS  Google Scholar 

  • Alabi AA, Bahamonde MI, Jung HJ, Kim JI, Swartz KJ (2007) Portability of paddle motif function and pharmacology in voltage sensors. Nature 450(7168):370–375, doi:10.1038/nature06266

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Gribble FM (2000) Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Its Complicat 4(4):192–196, doi:10.1016/S1056-8727(00)00081-7

    Article  Google Scholar 

  • Barghaan J, Tozakidou M, Ehmke H, Bähring R (2008) Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels. Biophys J 94(4):1276–1294

    Article  PubMed  CAS  Google Scholar 

  • Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ (1999) Choe S Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43, doi:10.1038/4911

    Article  PubMed  CAS  Google Scholar 

  • Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P et al (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140, doi:10.1038/ng1094-136

    Article  PubMed  CAS  Google Scholar 

  • Cabral JHM, Lee A, Cohen SL, Chait BT, Li M, Mackinnon R (1998) Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649–655, doi:10.1016/S0092-8674(00)81635-9

    Article  Google Scholar 

  • Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bahring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction. J Physiol 568(Pt 2):397–412, doi:10.1113/jphysiol.2005.094359

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Cushman S, Baker KA, Pfaffinger P (2002) Excitability is mediated by the T1 domain of the voltage-gated potassium channel. Novartis Found Symp 245:169–175, doi:10.1002/0470868759.ch12

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Kagan A, Qin D, Mathew J, Melman YF, McDonald TV (2001) Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2. J Biol Chem 276(20):17244–17251.

    Article  PubMed  CAS  Google Scholar 

  • Cushman SJ, Nanao MH, Jahng AW, DeRubeis D, Choe S, Pfaffinger PJ (2000) Voltage dependent activation of potassium channels is coupled to T1 domain structure. Nat Struct Biol 7(5):403–407, doi:10.1038/75185

    Article  PubMed  CAS  Google Scholar 

  • Darman RB, Ivy AA, Ketty V, Blaustein RO (2006) Constraints on voltage sensor movement in the shaker K+ channel. J Gen Physiol 128(6):687–699, doi:10.1085/jgp.200609624

    Article  PubMed  CAS  Google Scholar 

  • Deal KK, Lovinger DM, Tamkun MM (1994) The brain Kv1.1 potassium channel: in vitro and in vivo studies on subunit assembly and posttranslational processing. J Neurosci 14(3 Pt 2):1666–1676

    PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77, doi:10.1126/science.280.5360.69

    Article  PubMed  CAS  Google Scholar 

  • Etxeberria A, Aivar P, Rodriguez-Alfaro JA, Alaimo A, Villacé P, Gómez-Posada JC, Areso P, Villaroel A (2008) Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J 22(4):1135–1143, doi:10.1096/fj.07-9712com

    Article  PubMed  CAS  Google Scholar 

  • Gamper N, Shapiro MS (2003) Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol 122(1):17–31, doi:10.1085/jgp.200208783

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Nunziato DA, Pitt GS (2006) KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ Res 98(8):1048–1054, doi:10.1161/01.RES.0000218863.44140.f2

    Article  PubMed  CAS  Google Scholar 

  • Gulbis JM, Zhou M, Mann S, MacKinnon R (2000) Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science 289(5476):123–127, doi:10.1126/science.289.5476.123

    Article  PubMed  CAS  Google Scholar 

  • Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA et al (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57(4):473–508, doi:10.1124/pr.57.4.10

    Article  PubMed  CAS  Google Scholar 

  • Haitin Y, Attali B (2008) The C-terminus of Kv7 channels: a multifunctional modules. J Phisiol 586(7):1803–1810, doi:10.1113/jphysiol.2007.149187

    Article  CAS  Google Scholar 

  • Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knцtgen H, Sбnchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Heinz-Joachim-Radzun, Stьhmer W, Pardo LA (2006) Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 5:41, doi:10.1186/1476-4598-5-41

    Article  PubMed  CAS  Google Scholar 

  • Hille B. (2001) Ion Channels of Excitable Membrane (3rd Edition). Sunderland, Mass. Sinauer Associates, Inc.

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250(4980):533–538, doi:10.1126/science.2122519

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Clark KA, Holton JM, Minor DL Jr (2007) Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron 53(5):663–675, doi:10.1016/j.neuron.2007.02.010

    Article  PubMed  CAS  Google Scholar 

  • Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW (2007) Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130(Pt 10):2484–2493

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003a) X-ray structure of a voltage-dependent K+ channel. Nature 423(6935):33–41, doi:10.1038/nature01580

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003b) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423(6935):42–48, doi:10.1038/nature01581

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Tucker SJ, Ashcroft FM (2001) Multiple sites of interaction between the intracellular domains of an inwardly rectifying potassium channel, Kir6.2. FEBS 508:85–89, doi:10.1016/S0014-5793(01)03023-X

    Article  CAS  Google Scholar 

  • Ju M, Wray D (2002) Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett 524(1–3):204–210

    Article  PubMed  CAS  Google Scholar 

  • Ju M, Stevens L, Leadbitter E, Wray D (2003) The roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem 278(15):12769–12778, doi:10.1074/jbc.M212973200

    Article  PubMed  CAS  Google Scholar 

  • Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104(4):569–580, doi:10.1016/S0092-8674(01)00243-4

    Article  PubMed  CAS  Google Scholar 

  • Kim LA, Furst J, Gutierrez D, Butler MH, Xu S (2004) Three-dimensional structure of Ito: Kv4.2-KChIP2 ion channels by electron microscopy at 21Ă resolution. Neuron 4:513–519

    Article  Google Scholar 

  • Kobertz WR, Miller C (1999) K+ channels lacking the ‘tetramerization’ domain: implications for pore structure. Nat Struct Biol 6(12):1122–1125, doi:10.1038/70061

    Article  PubMed  CAS  Google Scholar 

  • Kobrinsky E, Stevens L, Kazmi Y, Wray D, Soldatov NM (2006) Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem 281(28):19233–19240, doi:10.1074/jbc.M601231200

    Article  PubMed  CAS  Google Scholar 

  • Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392(6679):945–948, doi:10.1038/31978

    Article  PubMed  CAS  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J et al (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926, doi:10.1126/science.1085028

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y, Hofmann T, Montell C (2007) Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 25(4):491–503, doi:10.1016/j.molcel.2007.01.021

    Article  PubMed  CAS  Google Scholar 

  • Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7(7):548–562

    Article  PubMed  CAS  Google Scholar 

  • Le Guennec JY, Ouadid-Ahidouch H, Soriani O, Besson P, Ahidouch A, Vandier C (2007) Voltage-gated ion channels, new targets in anti-cancer research. Recent Patents Anticancer Drug Discov 2(3):189–202

    CAS  Google Scholar 

  • Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K + channel and its dependence on the lipid membrane. Proc Natl Acad Sci USA 102(43):15441–15446, doi:10.1073/pnas.0507651102

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Um SY, McDonald TV (2006) Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist 12(3):199–210, doi:10.1177/1073858406287717

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005a) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903, doi:10.1126/science.1116269

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, Mackinnon R (2005b) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309(5736):903–908, doi:10.1126/science.1116270

    Article  PubMed  CAS  Google Scholar 

  • Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450(7168):376–382, doi:10.1038/nature06265

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Robinson JM, Edwards D, Deutsch C (2001) T1–T1 interactions occur in ER membranes while nascent Kv peptides are still attached to ribosomes. Biochemistry 40:10934–10946, doi:10.1021/bi010763e

    Article  PubMed  CAS  Google Scholar 

  • Ludwig J, Owen D, Pongs O (1997) Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel. EMBO J 16:6337–6345, doi:10.1093/emboj/16.21.6337

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AM, Backx PH, Wheeler MB (2001) Members of the Kv1 and Kv2 voltage-dependent K(+) channel families regulate insulin secretion. Mol Endocrinol. 15(8):1423–1435

    Article  PubMed  CAS  Google Scholar 

  • MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AM, Wheeler MB (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 277(47):44938–449345

    Article  PubMed  CAS  Google Scholar 

  • Magidovich E, Fleishman SJ, Yifrach O (2006) Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics 22(13):1546–1550, doi:10.1093/bioinformatics/btl137

    Article  PubMed  CAS  Google Scholar 

  • Magidovich E, Orr I, Fass D, Abdu U, Yifrach O (2007) Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins. Proc Natl Acad Sci USA 104(32):13022–13027, doi:10.1073/pnas.0704059104

    Article  PubMed  CAS  Google Scholar 

  • Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H (2003) C-terminal interaction of KCNQ2 and KCNQ3 K+ channels. J Physiol 548(Pt 2):353–360

    PubMed  CAS  Google Scholar 

  • Marten I, Hoshi T (1998) The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 74:2953–2962

    Article  PubMed  CAS  Google Scholar 

  • Minor DL Jr, Lin Y-F, Mobley BC, Avelar A, Jan YN, Jan LY et al (2000) The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 102:657–670, doi:10.1016/S0092-8674(00)00088-X

    Article  PubMed  CAS  Google Scholar 

  • Misonou H, Mohapatra DP, Menegola M, Trimmer JS (2005) Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. J Neurosci 25(48):11184–11193, doi:10.1523/JNEUROSCI.3370-05.2005

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 23(6943):949–955, doi:10.1038/nature01748

    Article  CAS  Google Scholar 

  • Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111:957–965, doi:10.1016/S0092-8674(02)01227-8

    Article  PubMed  CAS  Google Scholar 

  • Ong WL, Tang KC, Agarwal A, Nagarajan R, Luo LW, Yobas L (2007) Microfluidic integration of substantially round glass capillaries for lateral patch clamping on chip. Lab Chip 7(10):1357–1366, doi:10.1039/b707439e

    Article  PubMed  CAS  Google Scholar 

  • Orlova EV, Papakosta M, Booy FP, Van Heel M, Dolly JO (2003) Voltage-gated K+ channel from mammalian brain: 3D structure at 18A of the complete (alpha)4(beta)4 complex. J Mol Biol 326(4):1005–1012, doi:10.1016/S0022-2836(02)00708-8

    Article  PubMed  CAS  Google Scholar 

  • Ottschytsch N, Raes A, Van Hoorick D, Snyders DJ (2002) Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc Natl Acad Sci USA 99(12):7986–7991, doi:10.1073/pnas.122617999

    Article  PubMed  CAS  Google Scholar 

  • Park KH, Piron J, Dahimene S, Merot J, Baro I, Escande D et al (2005) Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Circ Res 96(7):730–739, doi:10.1161/01.RES.0000161451.04649.a8

    Article  PubMed  CAS  Google Scholar 

  • Rajakulendran S, Schorge S, Kullmann DM, Hanna MG (2007) Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 4(2):258–266

    Article  PubMed  CAS  Google Scholar 

  • Richards MC, Heron SE, Spendlove HE, Scheffer IE, Grinton B, Berkovic SF et al (2004) Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet 41(3):e35, doi:10.1136/jmg.2003.013938

    Article  PubMed  CAS  Google Scholar 

  • Richter A, Sander SE, Rundfeldt C (2006) Antidystonic effects of Kv7 (KCNQ) channel openers in the dt sz mutant, an animal model of primary paroxysmal dystonia. Br J Pharmacol 149(6):747–753

    Article  PubMed  CAS  Google Scholar 

  • Robbins J, Marsh SJ, Brown DA (2006) Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J Neurosci 26(30):7950–7961, doi:10.1523/JNEUROSCI.2138-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Roden DM, Viswanathan PC (2005) Genetics of acquired long QT syndrome. J Clin Invest 115(8):2025–2032

    Article  PubMed  CAS  Google Scholar 

  • Russell SN, Overturf KE, Horowitz B (1994) Heterotetramer formation and charybdotoxin sensitivity of two K+ channels cloned from smooth muscle. Am J Physiol 267(6 Pt 1):C1729–C1733

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186, doi:10.1093/nar/gkj001

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Xu QP (1999) Mutations of the S4–S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes. J Physiol 514:667–675, doi:10.1111/j.1469-7793.1999.667ad.x

    Article  PubMed  CAS  Google Scholar 

  • Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O (2000) A recessive C-terminal Jervell and Lange–Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19(3):332–340, doi:10.1093/emboj/19.3.332

    Article  PubMed  CAS  Google Scholar 

  • Schrader LA, Birnbaum SG, Nadin BM, Ren Y, Bui D, Anderson AE et al (2006) ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am J Physiol Cell Physiol 290(3):C852–C861, doi:10.1152/ajpcell.00358.2005

    Article  PubMed  CAS  Google Scholar 

  • Schulteis CT, Nagaya N, Papazian DM (1996) Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels. Biochemistry 35(37):12133–12140, doi:10.1021/bi961083s

    Article  PubMed  CAS  Google Scholar 

  • Schwake M, Jentsch TJ, Friedrich T (2003) A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep 4(1):76–81, doi:10.1038/sj.embor.embor715

    Article  PubMed  CAS  Google Scholar 

  • Schwake M, Athanasiadu D, Beimgraben C, Blanz J, Beck C, Jentsch TJ et al (2006) Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci 26(14):3757–3766, doi:10.1523/JNEUROSCI.5017-05.2006

    Article  PubMed  CAS  Google Scholar 

  • Shamgar L, Ma L, Schmitt N, Haitin Y, Peretz A, Wiener R et al (2006) Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ Res 98(8):1055–1063, doi:10.1161/01.RES.0000218979.40770.69

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, Matsuda K, Inoue Y, Yamakawa K et al (2006) A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis 24(2):245–253, doi:10.1016/j.nbd.2006.07.001

    Article  PubMed  CAS  Google Scholar 

  • Sokolova O (2004) Structure of cation channels, revealed by single particle electron microscopy. FEBS Lett 564(3):251–256, doi:10.1016/S0014-5793(04)00254-6

    Article  PubMed  CAS  Google Scholar 

  • Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001) Three-dimensional structure of a voltage-gated potassium channel at 2.5 nm resolution. Structure 9(3):215–220, doi:10.1016/S0969-2126(01)00578-0

    Article  PubMed  CAS  Google Scholar 

  • Sokolova O, Accardi A, Gutierrez D, Lau A, Rigney M, Grigorieff N (2003) Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc Natl Acad Sci USA 100(22):12607–12612, doi:10.1073/pnas.2235650100

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Takimoto K (2004) Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol 25(1):153–159

    PubMed  CAS  Google Scholar 

  • Suzuki S, Satoh T, Yasuoka H, Hamaguchi Y, Tanaka K, Kawakami Y, Suzuki N, Kuwana M (2005) Novel autoantibodies to a voltage-gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J Neuroimmunol 170(1–2):141–149

    Article  PubMed  CAS  Google Scholar 

  • Teng GQ, Lees-Miller JP, Duan Y, Li BT, Li P, Duff HJ (2003) [K(+)](o)-dependent change in conformation of the HERG1 long QT mutation N629D channel results in partial reversal of the in vitro disease phenotype. Cardiovasc Res 57(3):642–650, doi:10.1016/S0008-6363(02)00778-2

    Article  PubMed  CAS  Google Scholar 

  • Terlau H, Heinemann SH, Stuhmer W, Pongs O, Ludwig J (1997) Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment. J Physiol 502:537–543, doi:10.1111/j.1469-7793.1997.537bj.x

    Article  PubMed  CAS  Google Scholar 

  • VanDongen AM, Frech GC, Drewe JA, Joho RH, Brown AM (1990) Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron 5(4):433–443, doi:10.1016/0896-6273(90)90082-Q

    Article  PubMed  CAS  Google Scholar 

  • Viloria CG, Barros F, Giraldez T, Gomez-Varela D, de la Pena P (2000) Differential effects of amino-terminal distal and proximal domains in the regulation of human erg K(+) channel gating. Biophys J 79:231–246

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Trudeau MC, Zappia AM, Robertson GA (1998) Regulation of deactivation by an amino terminal domain in human ether-a-go-go-related gene potassium channels. J Gen Physiol 112:637–647, doi:10.1085/jgp.112.5.637

    Article  PubMed  CAS  Google Scholar 

  • Waters MF, Minassian NA, Stevanin G, Figeueroa KP, Bannister JP, Nolte D et al (2006) Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet 38(4):447–451, doi:10.1038/ng1758

    Article  PubMed  CAS  Google Scholar 

  • Weinreich F, Jentsch TJ (2000) Neurological diseases caused by ion-channel mutations. Curr Opin Neurobiol 10(3):409–415, doi:10.1016/S0959-4388(00)00089-1

    Article  PubMed  CAS  Google Scholar 

  • Wen H, Levitan IB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci 22(18):7991–8001

    PubMed  CAS  Google Scholar 

  • Wiener R, Haitin Y, Shamgar L, Fernández-Alonso MC, Martos A, Chomsky-Hecht, Rivas G, Attali B, Hirsch JA (2008) The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. J Biol Chem 283(9):5815–5830, doi:10.1074/jbc.M707541200

    Article  PubMed  CAS  Google Scholar 

  • Wissinger B, Dangel S, Jangle H, Hansen L et al (2008) Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Invest Ophthalmol Vis Sci 49:751–757

    Article  PubMed  Google Scholar 

  • Wray D (2004) The roles of intracellular regions in the activation of voltage-dependent potassium channels. Eur J Biophys 33:194–200, doi:10.1007/s00249-003-0363-2

    Article  CAS  Google Scholar 

  • Wray D (2008) Intracellular regions of potassium channels: Kv2.1 and heag. Eur Biophys J, doi:10.1007/s00249-008-0354-4

  • Yamakawa T, Saith S, Li Y, Gao X, Gaisano HY, Tsushima RG (2007) Interaction of syntaxin 1A with the N-terminus of Kv4.2 modulates channel surface expression and gating. Biochemistry 46(38):10942–10949, doi:10.1021/bi7006806

    Article  PubMed  CAS  Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419(6902):35–42, doi:10.1038/nature00978

    Article  PubMed  CAS  Google Scholar 

  • Yus-Najera E, Santana-Castro I, Villarroel A (2002) The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 277(32):28545–28553, doi:10.1074/jbc.M204130200

    Article  PubMed  CAS  Google Scholar 

  • Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205, doi:10.1038/nature01922

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Jan YN, Jan LY (2000) An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. Proc Natl Acad Sci USA 97(7):3591–3595, doi:10.1073/pnas.060016797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dennis Wray and Elizabeth Stroupe for critical reading and comments on the manuscript. We are thankful to Carole Williams and Kene Piasta for proofreading the manuscript. This work was supported in part by grants from the EU FP7 program, EDICT (No 201924) and RFBR (no. 08-04-01348-а) to OS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga S. Sokolova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pischalnikova, A.V., Sokolova, O.S. The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels. J Neuroimmune Pharmacol 4, 71–82 (2009). https://doi.org/10.1007/s11481-008-9130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-008-9130-6

Keywords

Navigation