Skip to main content
Log in

Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, surface plasmon resonance (SPR) technique has been utilized to characterize the optical properties of chitosan-graphene quantum dots (CS-GQDs) thin film and dopamine (DA). Theoretical fitting of SPR dips yielded refractive indices of DA solutions and CS-GQDs thin films, as well as the thickness of the thin film. For DA solution, n and k values were the same as deionized water for all concentrations. The values of n and k for CS-GQDs thin film were 1.6990 and 0.1302 respectively before contacting DA. The experimental SPR reflectance curves obtained using CS-GQDs thin film were shifted continuously to the right with increasing DA concentrations. After adsorption of DA molecules, both n and thickness of the CS-GQDs thin film increased, while the value of k decreased. This, in turns, enhanced the SPR sensitivity towards DA. The obtained results underscore the appropriate and sufficient potential of the used technique to measure refractive index variations in real-time when very low concentration was used (1 fM) with refractive index sensitivity of 10.186°/RIU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Javaheri S, Babaeipour M, Boochani A, Naderi S (2018) Electronic and optical properties of V doped A1N nanosheet : DFT calculations, Chinese. J Phys 56:2698–2709. https://doi.org/10.1016/j.cjph.2018.10.021

    CAS  Google Scholar 

  2. Singh S (2002) Refractive index measurement and its applications. Phys Scr 65:167–180. https://doi.org/10.1238/Physica.Regular.065a00167

    Article  CAS  Google Scholar 

  3. Mistrik J, Kasap S, Ruda H, Koughia C (2017) Optical properties of electronic materials: fundamentals and characterization. In: Springer Handbook of Electronic and Photonic Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9

  4. Yang R, Shi M, Wei Q, Wu F, Xue M, Zhou Y (2019) A first-principles study of the properties of P-43m-Si3×2 (X=N, P and As), Chinese. J Phys 59:535–545. https://doi.org/10.1016/j.cjph.2019.04.007

    CAS  Google Scholar 

  5. Ibrahim J, Al Masri M, Verrier I, Kampfe T, Veillas C, Celle F, Cioulachtjian S, Lefèvre F, Jourlin Y (2019) Surface plasmon resonance based temperature sensors in liquid environment. Sensors 19:1–10. https://doi.org/10.3390/s19153354

    Article  CAS  Google Scholar 

  6. Addanki S, Amiri IS, Yupapin P (2018) Review of optical fibers-introduction and applications in fiber lasers. Results Phys 10:743–750. https://doi.org/10.1016/j.rinp.2018.07.028

    Article  Google Scholar 

  7. Phillips KS, Cheng QJ (2008) Surface plasmon resonance. https://doi.org/10.1007/978-1-60327-375-6_46

    Google Scholar 

  8. Wang Y, Knoll W, Dostalek J (2012) Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. Anal Chem 84:8345–8350. https://doi.org/10.1021/ac301904x

    Article  CAS  PubMed  Google Scholar 

  9. Hong LH, Yahaya A, Munajat Y (2015) Simulation of surface plasmon resonance sensor. AIP Conf Proc 1674:1–6. https://doi.org/10.1063/1.4928832

    Google Scholar 

  10. Yanase Y, Sakamoto K, Kobayashi K, Hide M (2016) Diagnosis of immediate-type allergy using surface plasmon resonance. Opt Mater Express 6:1339. https://doi.org/10.1364/OME.6.001339

    Article  CAS  Google Scholar 

  11. Mukhtar WM, Murat NF, Samsuri ND, Dasuki KA (2018) Maximizing the response of SPR signal: a vital role of light excitation wavelength. AIP Conf Proc 2016. https://doi.org/10.1063/1.5055506

  12. Xia G, Zhou C, Jin S, Huang C, Xing J, Liu Z (2019) Sensitivity enhancement of two-dimensional materials based on genetic optimization in surface plasmon resonance. Sensors (Switzerland) 19. https://doi.org/10.3390/s19051198

  13. Sadafi MM, Karami H, Hosseini M (2021) A tunable hybrid graphene-metal metamaterial absorber for sensing in the THz regime. Curr Appl Phys 31:132–140. https://doi.org/10.1016/j.cap.2021.07.020

    Article  Google Scholar 

  14. SalmanOgli A, Nasseri B, Kohneh Shahri MY, Piskin E (2016) Plasmon – plasmon interaction effect on effective medium electrical conductivity (an effective agent for photothermal therapy). Curr Appl Phys 16:1498–1505. https://doi.org/10.1016/j.cap.2016.08.021

    Article  Google Scholar 

  15. Gomaa M, Salah A, Abdel Fattah G (2022) Utilizing dip-coated graphene/nanogold to enhance SPR-based fiber optic sensor. Appl Phys A Mater Sci Process 128:1–12. https://doi.org/10.1007/s00339-021-05196-z

    Article  CAS  Google Scholar 

  16. Kumar R, Pal S, Pal N, Mishra V, Prajapati YK (2021) High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure. Appl Phys A Mater Sci Process 127:1–12. https://doi.org/10.1007/s00339-021-04408-w

    Article  CAS  Google Scholar 

  17. Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors : a review. 809–824. https://doi.org/10.1007/s11468-013-9662-3

  18. Lei J, Ji B, Lin J (2016) A high-performance light absorber based on a metamaterial nanopyramid array, Chinese. J Phys 54:940–946. https://doi.org/10.1016/j.cjph.2016.09.003

    CAS  Google Scholar 

  19. Naz G, Butt FK, Bajwa SZ, Khan WS, Irfan M, Irfan M (2019) Au / Cu 2 O core / shell nanostructures with efficient photoresponses, Chinese. J Phys 59:307–316. https://doi.org/10.1016/j.cjph.2019.03.008

    CAS  Google Scholar 

  20. Ben H, Hocini A, Temmar MN, Khedrouche D (2019) Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor, Chinese. J Phys 61:86–97. https://doi.org/10.1016/j.cjph.2019.07.006

    CAS  Google Scholar 

  21. Zhijian L, Qing Z, Yaonan W, Suxia X (2019) Fano resonance in asymmetric gold nano-dimers with square and rectangular sections, Chinese. J Phys 59:40–48. https://doi.org/10.1016/j.cjph.2019.01.018

    CAS  Google Scholar 

  22. Jiang Q, Boyu J, Peng L, Xiaowei S, Haiyan T, Yinping D, Xun G, Zuoqiang H, Jingquan L (2018) Investigation of ultrafast plasmon control in silver block by PEEM, Chinese. J Phys 56:340–345. https://doi.org/10.1016/j.cjph.2017.11.015

    CAS  Google Scholar 

  23. Pan M, Lee K, Wang L, Wei P (2017) Biosensors and bioelectronics chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection. Biosens Bioelectron 91:580–587. https://doi.org/10.1016/j.bios.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  24. Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors : improving the limit of detection. Anal Bioanal Chem 3883–3897. https://doi.org/10.1007/s00216-014-8411-6

  25. Huang Y, Wu D, Chuang C, Nie B, Cui H, Yun W (2015) Theoretical analysis of tapered fiber optic surface plasmon resonance sensor for voltage sensitivity. Opt Fiber Technol 22:42–45. https://doi.org/10.1016/j.yofte.2015.01.004

    Article  CAS  Google Scholar 

  26. Arghir I, Spasic D, Verlinden BE, Delport F, Lammertyn J (2015) Improved surface plasmon resonance biosensing using silanized optical fibers. Sensors Actuators B Chem 216:518–526. https://doi.org/10.1016/j.snb.2015.04.069

    Article  CAS  Google Scholar 

  27. Zhao J, Cao S, Liao C, Wang Y, Wang G, Xu X, Fu C, Xu G, Lian J, Wang Y (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors Actuators B Chem 230:206–211. https://doi.org/10.1016/j.snb.2016.02.020

    Article  CAS  Google Scholar 

  28. Chang YF, Wang WH, Hong YW, Yuan RY, Chen KH, Huang YW, Lu PL, Chen YH, Chen YMA, Su LC, Wang SF (2018) Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody. Anal Chem 90:1861–1869. https://doi.org/10.1021/acs.analchem.7b03934

    Article  CAS  PubMed  Google Scholar 

  29. Fen YW, Yunus WMM, Yusof NA (2012) Surface plasmon resonance optical sensor for detection of Pb 2 + based on immobilized p-tert-butylcalix [4 ] arene-tetrakis in chitosan thin film as an active layer. Sensors Actuators B Chem 171–172:287–293. https://doi.org/10.1016/j.snb.2012.03.070

    Article  CAS  Google Scholar 

  30. Ali M, Karaaslan M, Sabah C (2018) Metamaterial-based fluid sensor for identifying different types of fuel oil samples, Chinese. J Phys 56:1872–1878. https://doi.org/10.1016/j.cjph.2018.08.018

    CAS  Google Scholar 

  31. Zubaidah S, Chao CC, Chau YC, Hanif A, Raziq M, Kooh R, Kumara NTRN, Chiang H (2021) Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles, Chinese. J Phys 71:286–299. https://doi.org/10.1016/j.cjph.2021.02.006

    CAS  Google Scholar 

  32. Horchani R (2018) Refractive index sensing using a linear graded plasmonic chain of metal nano-particles, Chinese. J Phys 56:1247–1251. https://doi.org/10.1016/j.cjph.2018.03.038

    CAS  Google Scholar 

  33. Haque T, Rouf HK (2021) DNA hybridization detection using graphene-MoSe2–Ag heterostructure-based surface plasmon resonance biosensor. Appl Phys A Mater Sci Process 127:1–13. https://doi.org/10.1007/s00339-021-04888-w

    Article  CAS  Google Scholar 

  34. Islam MR, Iftekher ANM, Hasan KR, Nayen MJ, Bin Islam S, Islam R, Khan RL, Moazzam E, Tasnim Z (2021) Surface plasmon resonance based highly sensitive gold coated PCF biosensor. Appl Phys A Mater Sci Process 127:1–12. https://doi.org/10.1007/s00339-020-04162-5

    Article  CAS  Google Scholar 

  35. Chung JW, Kim SD, Bernhardt R, Pyun JC (2005) Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensors Actuators, B Chem 111–112:416–422. https://doi.org/10.1016/j.snb.2005.03.055

    Article  CAS  Google Scholar 

  36. Uzun L, Say R, Ünal S, Denizli A (2009) Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron 24:2878–2884. https://doi.org/10.1016/j.bios.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  37. Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–904. https://doi.org/10.1021/ac300278p

    Article  CAS  PubMed  Google Scholar 

  38. Ertürk G, Özen H, Tümer MA, Mattiasson B, Denizli A (2016) Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sensors Actuators, B Chem 224:823–832. https://doi.org/10.1016/j.snb.2015.10.093

    Article  CAS  Google Scholar 

  39. He L, Pagneux Q, Larroulet I, Serrano AY, Pesquera A, Zurutuza A, Mandler D, Boukherroub R, Szunerits S (2017) Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens Bioelectron 89:606–611. https://doi.org/10.1016/j.bios.2016.01.076

    Article  CAS  PubMed  Google Scholar 

  40. Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe 3O 4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28. https://doi.org/10.1016/j.aca.2012.05.043

    Article  CAS  PubMed  Google Scholar 

  41. Osman B, Uzun L, Beşirli N, Denizli A (2013) Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater Sci Eng C 33:3609–3614. https://doi.org/10.1016/j.msec.2013.04.041

    Article  CAS  Google Scholar 

  42. Sener G, Uzun L, Say R, Denizli A (2011) Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sensors Actuators, B Chem 160:791–799. https://doi.org/10.1016/j.snb.2011.08.064

    Article  CAS  Google Scholar 

  43. Bocková M, Chadtová Song X, Gedeonová E, Levová K, Kalousová M, Zima T, Homola J (2016) Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem 408:7265–7269. https://doi.org/10.1007/s00216-016-9664-z

    Article  CAS  PubMed  Google Scholar 

  44. Le Brun AP, Soliakov A, Shah DSH, Holt SA, McGill A, Lakey JH (2015) Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Biomed Microdevices 17:1–10. https://doi.org/10.1007/s10544-015-9951-z

    CAS  Google Scholar 

  45. Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, Zhu S, Chen H (2013) Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 440:18–22. https://doi.org/10.1016/j.ab.2013.04.026

    Article  CAS  PubMed  Google Scholar 

  46. Cairns TM, Ditto NT, Atanasiu D, Lou H, Brooks BD, Saw WT, Eisenberg RJ, Cohen GH (2019) Surface plasmon resonance reveals direct binding of herpes simplex virus glycoproteins gH/gL to gD and locates a gH/gL binding site on gD. J Virol 93:1–21. https://doi.org/10.1128/jvi.00289-19

    Article  CAS  Google Scholar 

  47. Omidniaee A, Karimi S, Farmani A (2021) Surface plasmon resonance-based SiO2 Kretschmann configuration biosensor for the detection of blood glucose. Silicon. https://doi.org/10.1007/s12633-021-01081-9

    Google Scholar 

  48. Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM (2021) Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan / graphene quantum dots thin film. Spectrochim Acta Part A Mol Biomol Spectrosc 120202. https://doi.org/10.1016/j.saa.2021.120202

  49. Kamal Eddin FB, Fen YW (2020) Recent advances in electrochemical and optical sensing of dopamine. Sensors 20. https://doi.org/10.3390/s20041039

  50. Kamal Eddin FB, Fen YW (2020) The principle of nanomaterials based surface plasmon resonance biosensors and its potential for dopamine detection. Molecules 25. https://doi.org/10.3390/molecules25122769

  51. Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA (2020) Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-59388-3

    Article  CAS  Google Scholar 

  52. Omar NAS, Fen YW, Abdullah J, Zaid MHM, Daniyal WMEMM, Mahdi MA (2019) Sensitive surface plasmon resonance performance of cadmium sulfide quantum dots-amine functionalized graphene oxide based thin film towards dengue virus E-protein. Opt Laser Technol 114:204–208. https://doi.org/10.1016/j.optlastec.2019.01.038

    Article  CAS  Google Scholar 

  53. Omar NAS, Fen YW (2017) Recent development of SPR spectroscopy as potential method for diagnosis of dengue virus E-protein. Sens Rev. SR-07–2017–0130. https://doi.org/10.1108/SR-07-2017-0130

  54. Omar NAS, Fen YW, Saleviter S, Mohd W, Mustaqim E, Daniyal M, Ain N, Anas A (2019) Development of a graphene-based surface plasmon resonance optical sensor chip for potential biomedical application. https://doi.org/10.3390/ma12121928

    Google Scholar 

  55. Rosddi NNM, Fen YW, Omar NAS, Anas NAA, Hashim HS, Ramdzan NSM, Fauzi NIM, Anuar MF, Daniyal WMEMM (2021) Glucose detection by gold modified carboxyl-functionalized graphene quantum dots-based surface plasmon resonance. Optik 239:166779. https://doi.org/10.1016/j.ijleo.2021.166779

  56. Situ C, Mooney MH, Elliott CT, Buijs J (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC-Trends Anal Chem 29:1305–1315. https://doi.org/10.1016/j.trac.2010.09.003

    Article  CAS  Google Scholar 

  57. Zainuddin NH, Fen YW, Alwahib AA, Yaacob MH, Bidin N, Omar NAS, Mahdi MA (2018) Detection of adulterated honey by surface plasmon resonance optical sensor. Optik (Stuttg) 168:134–139. https://doi.org/10.1016/j.ijleo.2018.04.048

    Article  CAS  Google Scholar 

  58. Fen YW, Yunus WMM, Talib ZA (2013) Analysis of Pb ( II ) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy. Opt-Int J Light Electron Opt 124:126–133. https://doi.org/10.1016/j.ijleo.2011.11.035

    Article  CAS  Google Scholar 

  59. Daniyal WMEMM, Fen YW, Fauzi NIM, Hashim HS, Ramdzan NSM, Omar NAS (2020) Recent advances in surface plasmon resonance optical sensors for potential application in environmental monitoring. Sensors Mater 32:4191–4200

    Article  CAS  Google Scholar 

  60. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S (2020) Development of biopolymer and conducting polymer-based optical sensors for heavy metal ion detection. Molecules 25:26

    Article  Google Scholar 

  61. Hashim HS, Fen YW, Omar NAS, Abdullah J, Daniyal WMEMM, Saleviter S (2020) Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. Opt Express 28:9738

  62. Fauzi NIM, YW Fen, Omar NAS, Saleviter S, Daniyal WMEMM, Hashim HS, Nasrullah M (2020) Nanostructured chitosan/maghemite composites thin film for potential optical detection of mercury ion by surface plasmon resonance investigation. Polymers 12:1497

  63. Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Saleviter S, Omar NAS (2018) Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. Opt Express 26:34880

  64. Anas NAA, Fen YW, Omar NAS, Ramdzan NSM, Daniyal WMEMM, Saleviter S, Zainudin AA (2019) Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion. Opt Laser Technol 120:105724

  65. Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S (2019) Development of graphene quantum dots-based optical sensor for toxic metal ion detection. Sensors 19:3850

  66. Ramdzan NSM, Fen YW, Omar NAS, Anas NAA, Daniyal WMEMM, Saleviter S, Zainudin AA (2019) Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik 178:802–812

    Article  CAS  Google Scholar 

  67. Fen YW, Yunus WMM (2013) Surface plasmon resonance spectroscopy as an alternative for sensing heavy metal ions: a review. Sens Rev 33:305–314

    Article  Google Scholar 

  68. Daniyal WMEMM, Saleviter S, Fen YW (2018) Development of surface plasmon resonance spectroscopy for metal ion detection. Sens Mater 30:2023–2038

    Google Scholar 

  69. Zainudin AA, Fen YW, Yusof NA, Al-Rekabi SH, Mahdi MA, Omar NAS (2018) Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion, Spectrochim. Acta A. Mol. Biomol. Spectrosc 191:111–115

    CAS  Google Scholar 

  70. Fen YW, Yunus WMM, Yusof NA, Ishak NS, Omar NAS, Zainudin AA (2015) Preparation, characterization and optical properties of ionophore doped chitosan biopolymer thin film and its potential application for sensing metal ion. Optik 126:4688–4692

    Article  CAS  Google Scholar 

  71. Anas NAA, Fen YW, Yusof NA, Omar NAS, Daniyal WMEMM, Ramdzan NSM (2020) Highly sensitive surface plasmon resonance optical detection of ferric ion using CTAB/hydroxylated graphene quantum dots thin film. J Appl Phys 128:083105

  72. Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Saleviter S, Omar NAS (2019) Label-free optical spectroscopy for characterizing binding properties of highly sensitive nanocrystalline cellulose-graphene oxide based nanocomposite towards nickel ion. Spectrochim Acta A Mol Biomol Spectrosc 212:25–31

    Article  CAS  PubMed  Google Scholar 

  73. Saleviter S, Fen YW, Daniyal WMEMM, Abdullah J, Sadrolhosseini AR, Omar NAS (2019) Design and analysis of surface plasmon resonance optical sensor for determining cobalt ion based on chitosan-graphene oxide decorated quantum dots-modified gold active layer. Opt Express 27:32294–32307

    Article  CAS  PubMed  Google Scholar 

  74. Hashim HS, Fen YW, Omar NAS, Fauzi NIM, Daniyal WMEMM (2021) Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement 184:109855. https://doi.org/10.1016/j.measurement.2021.109855

    Article  Google Scholar 

  75. Wei W, Nong J, Zhu Y, Zhang G, Wang N, Luo S, Chen N, Lan G, Chuang CJ, Huang Y (2018) Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics 13:1–9. https://doi.org/10.1007/s11468-017-0534-0

    Article  CAS  Google Scholar 

  76. Arumugasamy SK, Govindaraju S, Yun K (2020) Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci 508:145294. https://doi.org/10.1016/j.apsusc.2020.145294

    Article  CAS  Google Scholar 

  77. Ben Aoun S (2017) Subject Category : Subject Areas : Author for correspondence : Nanostructured carbon electrode modified with N-doped graphene quantum dots – chitosan nanocomposite : a sensitive electrochemical dopamine sensor. R Soc Open Sci 4:1–12

    Article  Google Scholar 

  78. Weng S, Liang D, Qiu H, Liu Z, Lin Z, Zheng Z, Liu A, Chen W, Lin X (2015) Sensors and Actuators B : Chemical A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots ( GQDs ) as fluorescent probe. Sensors Actuators B Chem 221:7–14. https://doi.org/10.1016/j.snb.2015.06.093

    Article  CAS  Google Scholar 

  79. Zhou X, Ma P, Wang A, Yu C, Qian T, Wu S, Shen J (2014) Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens Bioelectron 64:404–410. https://doi.org/10.1016/j.bios.2014.09.038

    Article  CAS  PubMed  Google Scholar 

  80. Yan Y, Liu Q, Du X, Qian J, Mao H, Wang K (2015) Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal Chim Acta 853:258–264. https://doi.org/10.1016/j.aca.2014.10.021

    Article  CAS  PubMed  Google Scholar 

  81. Fen YW, Yunus WMM (2013) Utilization of chitosan-based sensor thin films for the detection of lead ion by surface plasmon resonance optical sensor. IEEE Sens J 13:1413–1418

    Article  CAS  Google Scholar 

  82. Fen YW, Yunus WMM, Yusof NA (2011) Optical properties of cross-linked chitosan thin film for copper ion detection using surface plasmon resonance technique. Opt Appl 41:999–1013

    Google Scholar 

  83. Fen YW, Yunus WMM, Moksin MM, Talib ZA, Yusof NA (2011) Surface plasmon resonance optical sensor for mercury ion detection by crosslinked chitosan thin film. J Optoelectron Adv Mater 13:279–285

    CAS  Google Scholar 

  84. Fen YW, Yunus WMM, Talib ZA (2013) Analysis of Pb(II) ion sensing by crosslinked chitosan thin film using surface plasmon resonance spectroscopy. Opt-Int J Light Electron Opt 124:126–133. https://doi.org/10.1016/j.ijleo.2011.11.035

    Article  CAS  Google Scholar 

  85. Bahrami A, Sadrolhosseini AR, Mamdoohi G, Bahzad K, Abdi MM (2015) Surface plasmon sensor based on polypyrrole multiwalled carbon nanotube composite layer to detect Al (III) in aqueous solution. Dig J Nanomater Biostructures 10:535–541

    Google Scholar 

  86. Schasfoort RBM (2017) Handbook of surface plasmon resonance. Royal Society of Chemistry

  87. Homola J (2006) Electromagnetic theory of surface plasmons. Springer Ser Chem Sens Biosens 3–44. https://doi.org/10.1007/5346_013

  88. Bashkatov AN, Genina EA (2003) Water refractive index in dependence on temperature and wavelength: a simple approximation. Opt Technol Biophys Med IV 5068:393–395

    Google Scholar 

  89. Franca AS, Nollet LML (eds) (2017) Spectroscopic methods in food analysis (1st ed). CRC Press. https://doi.org/10.1201/9781315152769

  90. Fernandes SC, Vieira IC, Peralta RA, Neves A (2010) Development of a biomimetic chitosan film-coated gold electrode for determination of dopamine in the presence of ascorbic acid and uric acid. Electrochim Acta 55:7152–7157. https://doi.org/10.1016/j.electacta.2010.06.062

    Article  CAS  Google Scholar 

  91. Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571–606. https://doi.org/10.1002/lpor.201000009

    Article  CAS  Google Scholar 

  92. Fouad S, Sabri N, Jamal ZAZ, Poopalan P (2017) Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int J Nanoelectron Mater 10:147–156

    Google Scholar 

  93. Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Mahdi MA (2021) Design and optimization of surface plasmon resonance spectroscopy for optical constant characterization and potential sensing application: theoretical and experimental approaches. Photonics 8:361

  94. Usman F, Dennis JO, Seong KC, Ahmed AY, Ferrell TL, Fen YW, Sadrolhosseini AR, Ayodele OB, Meriaudeau F, Saidu A (2019) Enhanced sensitivity of surface plasmon resonance biosensor functionalized with doped polyaniline composites for the detection of low-concentration acetone vapour. J Sensors 2019. https://doi.org/10.1155/2019/5786105

  95. Mudgal N, Saharia A, Agarwal A, Singh G (2020) ZnO and Bi-metallic (Ag–Au) layers-based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications. IETE J Res 1:1–8. https://doi.org/10.1080/03772063.2020.1844074

    Article  Google Scholar 

Download references

Acknowledgements

F.B.K.E. acknowledges the support received from OWSD and Sida (Swedish International Development Cooperation Agency), the laboratory facilities provided by the Institute of Advanced Technology, Department of Physics, Department of Chemistry, Universiti Putra Malaysia.

Funding

This research was funded by the Ministry of Education Malaysia through the Fundamental FRGS (FRGS/1/2019/STG02/UPM/02/1) and Universiti Putra Malaysia through Putra Grant (GP-IPB/2021/9700700).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Y.W.F. and F.B.K.E.; methodology, writing—original draft preparation, F.B.K.E.; supervision, validation, funding acquisition, Y.W.F.; writing—review and editing, Y.W.F. and F.B.K.E.; resources, Y.W.F., J.Y.C.L., and W.M.E.M.M.D.; software, Y.W.F., A.R.S., F.B.K.E., and W.M.E.M.M.D.; visualization, F.B.K.E. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yap Wing Fen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eddin, F.B.K., Fen, Y.W., Sadrolhosseini, A.R. et al. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics 17, 1985–1997 (2022). https://doi.org/10.1007/s11468-022-01680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01680-1

Keywords

Navigation