Skip to main content

Advertisement

Log in

Fabrication Friendly Plasmonic Metasurface Sensing and Switching Configuration Based on Plasmonic Induced Absorption: Analytical and Numerical Evaluation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Optical sensing and switching characteristic for a novel plasmonic metasurface structure are verified based on numerical and analytical evaluations for the proposed structure formed by metal-dielectric-metal (MDM) sandwiched layers. The application of MDM metasurfaces for sensors on plasmon-induced absorption (PIA) effect has been less studied. However, in this work, a planar plasmonic metasurface made of a ring and a bar cut-out nanostructures with a very small footprint in size of less than half of the operation wavelength is proposed to realize the PIA mechanism at near-infrared frequency regime. Moreover, by harnessing the incident light, the narrow-band and perfect absorption resonances occur at the wavelengths of 1133 and 1698 nm with highly enhanced electric fields around the nanostructure. This article is numerically studied using finite-difference time-domain (FDTD) method. Then, analytical analysis has been performed by transfer matrix method (TMM). The sensitivity values for the first and second resonances are 742.42 nm/RIU and 1684 nm/RIU, respectively. The figure of merit (FoM) values for those resonances are 68.74 and 40.09, respectively. Furthermore, it has been shown that by changing the polarization employed, the proposed nanostructure behaves as a plasmonic switch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. Lelek J, Kwiecien P, Fiala J, Richter I (2015) Study of resonant processes in plasmonic metasurfaces for SPR sensing. In 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), pp 268−270. https://doi.org/10.1109/MetaMaterials.2015.7342598

  2. Zhao Y, Gan S, Zhang G, Dai X (2019) High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator. Results in Physics 14:102477. https://doi.org/10.1016/j.rinp.2019.102477

    Article  Google Scholar 

  3. Lu J, Li Y, Han Y, Liu Y, Gao J (2018) D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl Opt 57(19):5268–5272. https://doi.org/10.1364/AO.57.005268

    Article  CAS  PubMed  Google Scholar 

  4. Pathak AK, Singh VK, Ghosh S, Rahman BMA (2019) Investigation of a SPR based refractive index sensor using a single mode fiber with a large D shaped microfluidic channel. OSA Continuum 2(11):3008–3018. https://doi.org/10.1364/OSAC.2.003008

    Article  CAS  Google Scholar 

  5. Miyazaki CM, Shimizu FM, Ferreira M (2017) Surface Plasmon Resonance (SPR) for Sensors and Biosensors, in Nanocharacterization Techniques,: William Andrew Publishing, pp 183–200

  6. Baranzadeh F, Nozhat N (2021) High performance plasmonic nano-biosensor based on tunable ultra-narrowband perfect absorber utilizing liquid crystal. Plasmonics 16(1):253–262. https://doi.org/10.1007/s11468-020-01285-6

    Article  CAS  Google Scholar 

  7. Lieberzeit PA, Dickert FL (2007) Sensor technology and its application in environmental analysis. Anal Bioanal Chem 387(1):237–247. https://doi.org/10.1007/s00216-006-0926-z

    Article  CAS  PubMed  Google Scholar 

  8. Dincer C et al (2019) Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31(30):1806739. https://doi.org/10.1002/adma.201806739

    Article  CAS  Google Scholar 

  9. Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M (2021) Plasmonic biosensors for food control. Trends Food Sci Technol 111:128–140. https://doi.org/10.1016/j.tifs.2021.02.057

    Article  CAS  Google Scholar 

  10. Vezočnik V, Hodnik V, Anderluh G (2017) Surface plasmon resonance analysis of food toxins and toxicants. In Analysis of Food Toxins and Toxicants, pp 195–216

  11. Al-Saady MFS, Albarazanchi AKH, Mohammed FS (2020) Design and simulation of localized surface plasmon resonance-based fiber optic chemical sensor. IOP Conf Ser Mater Sci Eng 871:012074. https://doi.org/10.1088/1757-899x/871/1/012074

    Article  CAS  Google Scholar 

  12. Gouvêa PM, Parra D, Braga AM, Carvalho IC (2011) Chemical sensing with an all-fiber reflection LSPR sensor (21st International Conference on Optical Fibre Sensors (OFS21)). SPIE

  13. Che Y, Wang X, Song Q, Zhu Y, Xiao S (2020) Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics 9(15):4407–4431. https://doi.org/10.1515/nanoph-2020-0311

    Article  CAS  Google Scholar 

  14. Zhang J, Wei X, Rukhlenko ID, Chen H-T, Zhu W (2020) Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics 7(1):265–271. https://doi.org/10.1021/acsphotonics.9b01532

    Article  CAS  Google Scholar 

  15. Chen H, Xiong L, Hu F, Xiang Y, Dai X, Li G (2021) Ultrasensitive and tunable sensor based on plasmon-induced transparency in a black phosphorus metasurface. Plasmonics. https://doi.org/10.1007/s11468-021-01374-0

    Article  Google Scholar 

  16. Alipour A, Farmani A, Mir A (2020) SiO2–silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing. Plasmonics 15(6):1935–1942. https://doi.org/10.1007/s11468-020-01217-4

    Article  CAS  Google Scholar 

  17. Alipour AH, Mir A (2019) Design and simulation of a high-selective plasmon-induced reflectance in coupled dielectric-metal-dielectric nano-structure for senor devices and slow light propagation. Plasmonics 14(2):511–521. https://doi.org/10.1007/s11468-018-0829-9

    Article  CAS  Google Scholar 

  18. Liu J, Papakonstantinou I, Hu H, Shao X (2019) Dynamically configurable, successively switchable multispectral plasmon-induced transparency. Opt Lett 44(15):3829–3832. https://doi.org/10.1364/OL.44.003829

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z et al (2018) Active control of broadband plasmon-induced transparency in a terahertz hybrid metal–graphene metamaterial. RSC Adv. https://doi.org/10.1039/C8RA04329A8(49),pp.27746-27753.10.1039/C8RA04329A

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jeddi Golfazani A, Alipour A, Bakhshipour M, Farmani A, Mir A (2021) Analytical and numerical models of a highly sensitive MDM plasmonic nano-structure in near-infrared range. Plasmonics 16(2):413–418. https://doi.org/10.1007/s11468-020-01294-5

    Article  CAS  Google Scholar 

  21. Wei W, Yan X, Shen B, Zhang X (2019) Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res Lett 14(1):246. https://doi.org/10.1186/s11671-019-3081-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keleshtery MH, Mir A, Kaatuzian H (2018) Investigating the characteristics of a double circular ring resonators slow light device based on the plasmonics-induced transparency coupled with metal-dielectric-metal waveguide system. Plasmonics 13(5):1523–1534. https://doi.org/10.1007/s11468-017-0660-8

    Article  CAS  Google Scholar 

  23. Liu J-Q, Zhou Y-X, Li L, Wang P, Zayats AV (2015) Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field. Opt Express 23(10):12524–12532. https://doi.org/10.1364/OE.23.012524

    Article  CAS  PubMed  Google Scholar 

  24. Matsunaga K, Hirai Y, Neo Y, Matsumoto T, Tomita M (2017) Tailored plasmon-induced transparency in attenuated total reflection response in a metal–insulator–metal structure. Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  25. Wang J, Niu Y, Liu D, Hu Z-D, Sang T, Gao S (2018) Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system. Plasmonics 13(2):609–616

    Article  Google Scholar 

  26. Vafapour Z, Ghahraloud H, Keshavarz A, Saiful Islam Md, Rashidi A, Dutta M, Stroscio MA (2021) The potential of refractive index nanobiosensing using a multi-band optically tuned perfect light metamaterial absorber. IEEE Sensor J. https://doi.org/10.1109/JSEN.2021.3070731

    Article  Google Scholar 

  27. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101(4):047401. https://doi.org/10.1103/PhysRevLett.101.047401

    Article  CAS  PubMed  Google Scholar 

  28. Jiang X et al (2020) Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Opt Express 28(23):34079–34092. https://doi.org/10.1364/OE.412442

    Article  CAS  PubMed  Google Scholar 

  29. Han X, Wang T, Li X, Liu B, He Y, Tang J (2015) Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system. J Phys D Appl Phys 48(23):235102. https://doi.org/10.1088/0022-3727/48/23/235102

    Article  CAS  Google Scholar 

  30. Ruan B, Xiong C, Liu C, Li M, Wu K, Li H (2020) Tunable plasmon-induced transparency and slow light in a metamaterial with grapheme. Results Phys 19:103382. https://doi.org/10.1016/j.rinp.2020.103382

    Article  Google Scholar 

  31. Niu X et al (2019) Plasmon-induced transparency effect for ultracompact on-chip devices. Nanophotonics 8(7):1125–1149. https://doi.org/10.1515/nanoph-2019-0093

    Article  Google Scholar 

  32. Alipour A, Farmani A, Mir A (2018) High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface. IEEE Sens J 18(17):7047–7054. https://doi.org/10.1109/JSEN.2018.2854882

    Article  CAS  Google Scholar 

  33. Li Y, Yuan Y, Peng X, Song J, Liu J, Qu J (2019) An ultrasensitive Fano resonance biosensor using two dimensional hexagonal boron nitride nanosheets: theoretical analysis. RSC Adv 9(51):29805–29812. https://doi.org/10.1039/C9RA05125B

    Article  CAS  Google Scholar 

  34. Vafapour Z, Hajati Y, Hajati M, Ghahraloud H (2017) Graphene-based mid-infrared biosensor. J Opt Soc Am B 34(12):2586–2592. https://doi.org/10.1364/JOSAB.34.002586

    Article  CAS  Google Scholar 

  35. Ling Y et al (2018) Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 10(41):19517–19523. https://doi.org/10.1039/C8NR03564D

    Article  CAS  PubMed  Google Scholar 

  36. Taubert R, Hentschel M, Kästel J, Giessen H (2012) Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett 12(3):1367–1371. https://doi.org/10.1021/nl2039748

    Article  CAS  PubMed  Google Scholar 

  37. Hu C, Lin Q, Zhai X, Wen M, Wang L (2019) Plasmonically induced perfect absorption in graphene/metal system. Nanoscale Res Lett 14(1):300. https://doi.org/10.1186/s11671-019-3121-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao E et al (2019) Dynamically tunable dual plasmon-induced transparency and absorption based on a single-layer patterned graphene metamaterial. Opt Express 27:13884–13894. https://doi.org/10.1364/oe.27.013884

    Article  CAS  PubMed  Google Scholar 

  39. Zhang T et al (2017) Dynamically tunable plasmon induced absorption in graphene-assisted metallodielectric grating. Opt Express 25(21):26221–26233. https://doi.org/10.1364/OE.25.026221

    Article  CAS  PubMed  Google Scholar 

  40. Li Y, An B, Jiang S, Gao J, Chen Y, Pan S (2015) Plasmonic induced triple-band absorber for sensor application. Opt Express 23(13):17607–17612. https://doi.org/10.1364/OE.23.017607

    Article  CAS  PubMed  Google Scholar 

  41. Huang P-N et al (2018) Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators. Opt Commun 410:148–152. https://doi.org/10.1016/j.optcom.2017.09.102

    Article  CAS  Google Scholar 

  42. Li X, Wang D, Wang S, Yuan L, Lei J, Li X (2020) Enhanced plasmonic-induced absorption using a cascade scheme and its application as refractive-index sensor. Photonic Sens 10(2):162–170. https://doi.org/10.1007/s13320-019-0561-x

    Article  Google Scholar 

  43. Li H, Wang L, Zhai X (2016) Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings. IEEE Photonics Technol Lett 28(13):1454–1457. https://doi.org/10.1109/LPT.2016.2554123

    Article  Google Scholar 

  44. Lin Q, Zhai X, Su Y, Meng H, Wang L (2017) Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide. Appl Opt 56(34):9536–9541. https://doi.org/10.1364/AO.56.009536

    Article  CAS  PubMed  Google Scholar 

  45. Lin Q et al (2016) A novel design of plasmon-induced absorption sensor. Appl Phys Express 9(6):062002. https://doi.org/10.7567/apex.9.062002

    Article  Google Scholar 

  46. Hu J-F, Liu J, Liu B, Chen J, Liang H-Q, Li G-Q (2018) Plasmon-induced absorption and its applications for fast light and sensing based on double-stub resonators. Optik 159:254–260. https://doi.org/10.1016/j.ijleo.2018.01.085

    Article  CAS  Google Scholar 

  47. Wen M, Wang L, Zhai X, Lin Q, Xia S (2016) Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide. Europhys Lett 116(4):44004. https://doi.org/10.1209/0295-5075/116/44004

    Article  CAS  Google Scholar 

  48. Xie Y, Ye Y, Liu Y, Wang S, Zhang J, Liu Y (2018) Synchronous slow and fast light based on plasmon-induced transparency and absorption in dual hexagonal ring resonators. IEEE Trans Nanotechnol 17(3):552–558. https://doi.org/10.1109/TNANO.2018.2825382

    Article  CAS  Google Scholar 

  49. Wen K et al (2016) Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure. IEEE Photonics J 8(5):1–8. https://doi.org/10.1109/JPHOT.2016.2604460

    Article  Google Scholar 

  50. Zheng K, Yuan Y, Zhao L, Chen Y, Zhang F, Song J, Qu J (2019) Ultra-compact, low-loss terahertz waveguide based on graphene plasmonic technology. 2D Mater 7(1):015016

    Article  Google Scholar 

  51. Zheng K, Yuan Y, He J, Gu G, Zhang F, Chen Y, Song J, Qu J (2019) Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology. Nanoscale 11(10):4601–4613

    Article  CAS  Google Scholar 

  52. Zheng K, Song J, Qu J (2018) Hybrid low-permittivity slot-rib plasmonic waveguide based on monolayer two dimensional transition metal dichalcogenide with ultra-high energy confinement. Opt Express 26(12):15819–15824

    Article  CAS  Google Scholar 

  53. Zare MS, Nozhat N, Rashiditabar R (2019) A strong controllable absorber using graphene-metal nanostructure. J Mod Opt 66(1):7–16. https://doi.org/10.1080/09500340.2018.1510055

    Article  CAS  Google Scholar 

  54. Amiri S, Nozhat N (2016) Plasmonic nanodipole antenna array with extra arms for sensing applications. J Opt Soc Am B 33(8):1769–1776. https://doi.org/10.1364/JOSAB.33.001769

    Article  CAS  Google Scholar 

  55. Butt MA, Kazanskiy NL, Khonina SN (2020) Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sens 10(3):223–232. https://doi.org/10.1007/s13320-020-0588-z

    Article  CAS  Google Scholar 

  56. Zhu JH, Huang XG, Mei X (2011) Plasmonic electro-optical switches operating at telecom wavelengths. Plasmonics 6(3):605. https://doi.org/10.1007/s11468-011-9241-4

    Article  Google Scholar 

  57. Zhong R et al (2020) Ultrawideband terahertz absorber with a graphene-loaded dielectric hemi-ellipsoid. Opt Express 28(20):28773–28781. https://doi.org/10.1364/OE.401069

    Article  CAS  PubMed  Google Scholar 

  58. Wei Z et al (2017) Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12(3):641–647. https://doi.org/10.1007/s11468-016-0309-z

    Article  CAS  Google Scholar 

  59. Hamouleh-Alipour A, Mir A, Farmani A (2021) Analytical modeling and design of a graphene metasurface sensor for hermo-optical detection of terahertz plasmons. IEEE Sens J 21(4):4525–4532. https://doi.org/10.1109/JSEN.2020.3035577

    Article  CAS  Google Scholar 

  60. Verellen N et al (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11(2):391–397. https://doi.org/10.1021/nl102991v

    Article  CAS  PubMed  Google Scholar 

  61. Tsai C-Y, Lu S-P, Lin J-W, Lee P-T (2011) High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl Phys Lett 98(15):153108. https://doi.org/10.1063/1.3579536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang W, Li Y, Chen J, Chen Z, Xu J, Sun Q (2014) Plasmonic analog of electromagnetically induced transparency in planar metamaterials: manipulation and applications. J Mod Opt 61(20):1679–1684. https://doi.org/10.1080/09500340.2014.949321

    Article  CAS  Google Scholar 

  63. Chen F, Yao D (2014) Tunable multiple all-optical switch based on multi-nanoresonator-coupled waveguide systems containing Kerr material. Opt Commun 312:143–147

    Article  CAS  Google Scholar 

  64. Yu Y, Zhao Y, Qiao Y, Feng Y, Li W, Fei W (2021) Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J Mater Sci Technol 84:10–15. https://doi.org/10.1016/j.jmst.2020.12.046

    Article  Google Scholar 

  65. Zhang K, Ali A, Antonarakis A, Moghaddam M, Saatchi S, Tabatabaeenejad A, Moorcroft P (2019) The sensitivity of North American terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar-derived estimates of root-zone soil moisture. J Geophys Res Biogeosci 124(11):3208–3231. https://doi.org/10.1029/2018JG004589

    Article  CAS  Google Scholar 

  66. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  67. Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater (Weinheim) 28(45):9979–9985. https://doi.org/10.1002/adma.201603735

    Article  CAS  Google Scholar 

  68. Ji B, Zhang F, Song X, Tang Y (2017) A novel potassium-ion-based dual-ion battery. Adv Mater (Weinheim) 29(19):1700519. https://doi.org/10.1002/adma.201700519

    Article  CAS  Google Scholar 

  69. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672. https://doi.org/10.1038/s41557-018-0045-4

    Article  CAS  PubMed  Google Scholar 

  70. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y (2020) Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl Sci Rev 8(7):nwaa178. https://doi.org/10.1093/nsr/nwaa178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu L, Zhang X, Zhu Q, Li K, Lu Y, Zhou X, Guo T (2021) Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. Light Sci Appl 10(1):181. https://doi.org/10.1038/s41377-021-00618-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu X, Sun Y, Zhao D, Wu S (2021) A revised contact stiffness model of rough curved surfaces based on the length scale. Tribol Int. https://doi.org/10.1016/j.triboint.2021.107206

    Article  Google Scholar 

  73. Yan Y, Feng L, Shi M, Cui C, Liu Y (2020) Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food Chem 306:125589. https://doi.org/10.1016/j.foodchem.2019.125589

    Article  CAS  PubMed  Google Scholar 

  74. Farmani A, Miri M, Sheikhi MH (2017) Tunable resonant Goos-Hänchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. JOSA B 34(6):1097–1106

    Article  CAS  Google Scholar 

  75. Farmani A, Mir A, Sharifpour Z (2018) Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect. Appl Surf Sci 453:358–364

    Article  CAS  Google Scholar 

  76. Baqir MA et al (2018) Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Opt 57(31):9447–9454

    Article  CAS  Google Scholar 

  77. Farmani A (2019) Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2):401–407

    Article  CAS  Google Scholar 

  78. Farmani A et al (2017) Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlattice Microst 112:404–414

    Article  CAS  Google Scholar 

  79. Farmani A, Mir A (2019) Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photonics Technol Lett 31(8):643–646

    Article  CAS  Google Scholar 

  80. Farmani A, Miri M, Sheikhi MH (2017) Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon Technol Lett 30(2):153–156

    Article  Google Scholar 

  81. Mokri K, Mozaffari MH, Farmani A (2021) Polarization-dependent plasmonic nano-tweezer as a platform for on-chip trapping and manipulation of virus-like particles. IEEE Trans NanoBiosci

  82. Khani S, Farmani A, Mir A (2021) Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci Rep 11(1):1–13

    Article  Google Scholar 

  83. Jafari D, Danaie M, Orouji AA (2021) Ultra-fast two-bit all-optical analog to digital convertor based on surface plasmons and Kerr-type nonlinear cavity. Plasmonics 1–8

  84. Hajshahvaladi L, Kaatuzian H, Danaie M (2021) Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Phys Lett A 420:127754

    Article  CAS  Google Scholar 

  85. Karimi Y et al (2021) All-optical plasmonic switches based on fano resonance in an X-shaped resonator coupled to parallel stubs for telecommunication applications. Optik 167424

  86. Luo P et al (2021) Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure. Opt Express 29(19):29690–29703

    Article  CAS  Google Scholar 

  87. Nong J et al (2021) Enhanced graphene plasmonic mode energy for highly sensitive molecular fingerprint retrieval. Laser Photonics Rev 15(1):2000300

    Article  CAS  Google Scholar 

  88. Nong J et al (2021) Combined visible plasmons of Ag nanoparticles and infrared plasmons of graphene nanoribbons for high-performance surface-enhanced Raman and infrared spectroscopies. Small 17(1):2004640

    Article  CAS  Google Scholar 

  89. Nong J et al (2020) Wideband tunable perfect absorption of graphene plasmons via attenuated total reflection in Otto prism configuration. Nanophotonics 9(3):645–655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Contributions

Equal contributions of all authors.

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamouleh-Alipour, A., Attariabad, A. & Farmani, A. Fabrication Friendly Plasmonic Metasurface Sensing and Switching Configuration Based on Plasmonic Induced Absorption: Analytical and Numerical Evaluation. Plasmonics 17, 881–891 (2022). https://doi.org/10.1007/s11468-021-01575-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01575-7

Keywords

Navigation