Skip to main content
Log in

Investigations on Graphene-Based Ultra-Wideband (UWB) Microstrip Patch Antennas for Terahertz (THz) Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An investigation on graphene-based hexagonal microstrip patch antenna has been carried out in this article. The hexagonal-shaped radiators have been designed and modified by incorporating a U-shaped slot and an elliptical-shaped slot on the surface of the patches, respectively, to enhance the radiation performance of the suggested structures. The proposed structures are simulated over an ultra-wideband frequency (UWB) for terahertz applications. The comparative studies have been performed to investigate the effects of the incorporated U-shaped and elliptical-shaped slots on the radiation performance of the proposed graphene-based antenna structures. A significant improvement in gain and directivity is noticed for the elliptical slot-loaded structure. Both the proposed U-shaped and elliptical-shaped slot loaded hexagonal printed antennas offer an impedance bandwidth ranging from 0.68 to 1.63 THz for \({S}_{11}\) ≤ − 10 dB. A detailed analysis of the parameters such as reflection coefficient, voltage standing wave ratio (VSWR), gain, directivity, and radiation patterns is presented for the suggested THz antenna models. The obtained reflection coefficient and VSWR ensure perfect impedance matching throughout the operating band for the suggested structures. The proposed antenna can be useful for ultra-wideband applications in the terahertz regime like THz bio-imaging, spectroscopy, explosive detection, medical diagnoses, communication, and weather monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ghann W, Uddin J (2017) Terahertz (THz) Spectroscopy: A Cutting Edge Technology. Terahertz Spectroscopy-A Cutting Edge Technology

  2. Rabbani MS, Ghafouri-Shiraz H (2017) Liquid crystalline polymer substrate-based THz microstrip antenna arrays for medical applications. IEEE Antennas Wirel Propag Lett 16:1533–1536

    Article  Google Scholar 

  3. Abohmra A, Abbas H, Jilani SF, Alomainy A, Imran MA, Abbasi QH (2019) High bandwidth perovskite based antenna for high-resolution biomedical imaging at terahertz. IEEE International Symposium on Antennas and Propagation and USNC URSI Radio Sci Meet 2019:503–504

    Article  Google Scholar 

  4. Zhang XC (2002) Terahertz wave imaging: horizons and hurdles. Phys Med Biol 47(21):3667

    Article  CAS  Google Scholar 

  5. Lewis RA (2014) A review of terahertz sources. J Phys D Appl Phys 47:374001

  6. Aoki K, Savolainen J, Havenith M (2017) Broadband terahertz pulse generation by optical rectification in GaP crystals. Appl Phys Lett 110:201103. https://doi.org/10.1063/1.4983371

    Article  CAS  Google Scholar 

  7. D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A (2007) Coherent and incoherent radial THz radiation emission from femtosecond filaments in air. Opt Express 15(23):15274

  8. Lee YS (2009) Continuous-Wave Terahertz Sources and Detectors. In: Principles of Terahertz Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09540-0_4

  9. Lewis RA (2019) A review of terahertz detectors. J Phys D: Appl Phys 52:433001

    Article  CAS  Google Scholar 

  10. Yu C, Fan S, Sun Y, Pickwell MPE (2012) The potential of terahertz imaging for cancer diagnosis. A review of investigations to date. Quantitative imaging in medicine and surgery 2(1):33

  11. Amenabar I, Lopez F, Mendikute A (2013) In introductory review to THz non-destructive testing of composite mater. J Infrared Millim Terahertz Waves 34(2):152–169

    Article  Google Scholar 

  12. Liu J, Fan WH, Chen X, Xie J (2016) Identification of high explosive RDX using terahertz imaging and spectral fingerprints. J Phys Conf Ser 680(1):012030. IOP Publishing

  13. Skvortsov LA (2014) Standoff detection of hidden explosives and cold and fire arms by terahertz time-domain spectroscopy and active spectral imaging. J Appl Spectrosc 81(5):725–749

    Article  CAS  Google Scholar 

  14. Varshney G (2020) Ultra-wideband antenna using graphite disk resonator for THz applications. Superlattices Microstruct 106480

  15. Abdulnabi HA, Shuriji MA, Ahmed S (2020) UWB THz plasmonicmicrostrip antenna based on graphene. Telkomnika 18(1):30–36

    Article  Google Scholar 

  16. AzimBeik M, Moradi G, Shirazi RS (2018) Graphene-based switched line phase shifter in THz band. Optik 172:431–436

    Article  CAS  Google Scholar 

  17. Yang Z, Lu R, Wang Y, Cai S, Zhang Y, Wang X, Liu Y (2019) A fabrication-friendly graphene-based polarization insensitive optical modulator. Optik 182:1093–1098

    Article  CAS  Google Scholar 

  18. Lu Y, Cai K, Li Y, Duan Z, Xi Y, Wang Z (2019) A high speed optical modulator based on graphene-on-graphene hybrid nanophotonic waveguide. Optik 179:216–221

    Article  CAS  Google Scholar 

  19. Biabanifard M, Asgari S, Biabanifard S, Abrishamian MS (2019) Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182:433–442

    Article  CAS  Google Scholar 

  20. Khani S, Danaie M, Rezaei P (2019) Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integr Circ Sig Process 98(2):367–376

    Article  Google Scholar 

  21. Varshney G, Gotra S, Pandey VS et al (2019) Proximity-coupled graphene-patch-based tunable single-/dual-band notch filter for THz applications. J Elec Mater 48:4818–4829. https://doi.org/10.1007/s11664-019-07274-8

    Article  CAS  Google Scholar 

  22. Khan MAK, Ullah MI, Kabir R et al (2020) High-performance graphene patch antenna with superstrate cover for terahertz band application. Plasmonics 15:1719–1727. https://doi.org/10.1007/s11468-020-01200-z

    Article  CAS  Google Scholar 

  23. Gao M, Li K, Kong F et al (2020) Graphene-based composite right/left-handed leaky-wave antenna at terahertz. Plasmonics 15:1199–1204. https://doi.org/10.1007/s11468-020-01130-w

    Article  CAS  Google Scholar 

  24. Toqeer I, Ghaffar A, Naz MY, Sultana B (2019) Characteristics of dispersion modes supported by graphene chiral graphene waveguide. Optik 186:28–33

    Article  CAS  Google Scholar 

  25. Wu W, Zhang J, Li Y, Chen W, Wang P, Li S, Fu Q (2019) Numerical investigation of an electro-optic majority voting circuit utilizing graphene-silicon nitride waveguides. Optik 186:205–211

    Article  CAS  Google Scholar 

  26. Naqvi SA (2017) Miniaturized triple-band and ultrawideband (UWB) fractal antennas for UWB applications. Microw Opt Technol Lett 59(7):1542–1546

    Article  Google Scholar 

  27. Salamin MA, Das S, Madhav BTP, Lakrit S, Roy A, Zugari A (2020) A miniaturized printed UWB antenna with dual notching for X-band and aeronautical radio navigation applications. Telkomnika 18:2868–2877

    Article  Google Scholar 

  28. Das S, Sarkar PP, Chowdhury SK (2014) Design and analysis of a compact triple band slotted microstrip antenna with modified ground plane for wireless communication applications. Prog Electromagn Res B 60(1):215–225

    Article  Google Scholar 

  29. Boutejdar A, Salamin MA, Challal M, Das S, El HS, Bennani SS, Sarkar PP (2018) A compact wideband monopole antenna using single open loop resonator for wireless communication applications. Telkomnika (Telecommunication Computing Electronics and Control) 16(5):2023–2031

    Article  Google Scholar 

  30. Salamin MA, Ali WAE, Das S, Zugari A (2020) A novel etched-substrate mechanism for characteristics improvement of X band broad band printed monopole antenna. Microsyst Technol

  31. Al-Azza A, Malalla NA, Harackiewicz FJ, Han K (2018) Stacked conical-cylindrical hybrid dielectric resonator antenna for improved ultrawide bandwidth. Prog Electromagn Res Lett 79:79–86

    Article  Google Scholar 

  32. Salamin MA, Ali WAE, Das S, Zugari A (2019) Design and investigation of a multi-functional antenna with variable wideband/notched UWB behavior for WLAN/X-band/UWB and Ku-band applications. AEU - Int J Electron Commun 111:152895

    Article  Google Scholar 

  33. Lakrit S, DasS, Madhav, BTP, G (2020) Compact UWB flexible elliptical CPW-fed antenna with triple notch bands for wireless communications. Int J RF Microwave Comput Aided Eng 30(7):e22201

    Article  Google Scholar 

  34. Lakrit S, Das S, El Alami A, Barad D, Mohapatra S (2019) A compact UWB monopole patch antenna with reconfigurable Band-notched characteristics for Wi-MAX and WLAN applications. AEU - Int J Electron Commun 105:106–115

    Article  Google Scholar 

  35. Medkour H, Cheniti M, Narbudowicz A, Das S, Vandelle E, Vuong TP (2020) Coplanar waveguide based ultra wide band antenna with switchable filtering of WiMAX and WLAN 5 GHz signals. Microw Opt Technol Lett 62:2398–2404

    Article  Google Scholar 

  36. Younssi M, Jaoujal A, Yaccoub MD, El Moussaoui A, Aknin N (2013) Study of a microstrip antenna with and without superstrate for terahertz frequency. Int J Innov Appl Stud 2(4):369–371

    Google Scholar 

  37. Kushwaha RK, Karuppanan P, Malviya LD (2018) Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys B 545:107–112

    Article  CAS  Google Scholar 

  38. Singh A, Singh S (2015) A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics Nanostruct 14:52–62

  39. Hocini A, Temmar MN, Khedrouche D, Zamani M (2019) Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. https://doi.org/10.1016/j.photonics.2019.100723

    Article  Google Scholar 

  40. Shamim SM, Uddin MS, Hasan M et al (2020) Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. J Comput Electron. https://doi.org/10.1007/s10825-020-01587-2

    Article  Google Scholar 

  41. Anand S, Kumar DS, Wu RJ, Chavali M (2014) Graphene nano ribbon based terahertz antenna on polyimide substrate. Optik 125 (2014):5546–5549

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception, design, and simulations. Data collection, analysis, and simulation were initially carried out by Sardar Mohammed Shamim, Sudipta Das, and Arafat Hossain. Additional input to analysis and simulation was given by Sudipta Das and Boddapati Taraka Phani Madhav. All authors contributed to complete the writing and presentation of the whole manuscript.

Corresponding author

Correspondence to Sudipta Das.

Ethics declarations

Informed Consent

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, S.M., Das, S., Hossain, M.A. et al. Investigations on Graphene-Based Ultra-Wideband (UWB) Microstrip Patch Antennas for Terahertz (THz) Applications. Plasmonics 16, 1623–1631 (2021). https://doi.org/10.1007/s11468-021-01423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01423-8

Keywords

Navigation