Skip to main content
Log in

Detection of Cobalt Ion Based on Surface Plasmon Resonance of L-Cysteine Functionalized Silver Nanotriangles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A facile and sensitive spectroscopic detection method for the detection of cobalt ion was introduced by the use of the surface plasmon resonance of silver nanotriangles (AgTrngs). After successful capping and functionalizing of AgTrngs, with an average edge length of ~ 54 nm, by trisodium citrate (TSC) and L-Cysteine, they were employed for the detection of cobalt ion based on the change in their in-plane dipole resonance. According to the obtained results, the developed sensor showed a response time as short as 10 s with a detection limit of 3.5 nM in the concentration range of 10–100 nM; in addition, this sensor needs a small volume of samples for cobalt ion determination that makes it ideal for the analysis of the body fluids as well as other aqueous effluents. Finally, based on the transmission electron microscopy, the oxidation of AgTrngs by cobalt ion was proposed as the detection mechanisms that result in the decrease in the in-plane dipole plasmon resonance of AgTrngs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amirjani A, Haghshenas DF (2018) Ag nanostructures as the surface plasmon resonance (SPR)˗ based sensors: a mechanistic study with an emphasis on heavy metallic ions detection. Sensors Actuators B Chem 273:1768–1779

    Article  CAS  Google Scholar 

  2. Li Z et al (2014) Surface-enhanced fluorescent immunoassay on 2D silver nanotriangles array. Spectrochim Acta A Mol Biomol Spectrosc 124:655–662

    Article  CAS  Google Scholar 

  3. Mohammadi S, Khayatian G (2017) Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 185:27–34

    Article  CAS  Google Scholar 

  4. Leyssens L, Vinck B, van der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56

    Article  CAS  Google Scholar 

  5. Mohandoss S, Stalin T (2017) A new fluorescent PET sensor probe for co 2+ ion detection: computational, logic device and living cell imaging applications. RSC Adv 7(27):16581–16593

    Article  CAS  Google Scholar 

  6. Shamsipur M et al (2008) An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl) methyl]-5, 6, 7, 8, 9, 10-hexahydro-2H-1, 13, 4, 7, 10-benzodioxatriazacyclopentadecine-3, 11 (4H, 12H)-dione as a novel fluoroionophore for determination of cobalt (II) ions. Anal Chim Acta 630(1):57–66

    Article  CAS  Google Scholar 

  7. Inpota P et al (2018) Chemiluminescence detection with microfluidics for innovative in situ measurement of unbound cobalt ions in dynamic equilibrium with bound ions in binding study with polyethyleneimine and its functionalized nanoparticles. Talanta 188:606–613

    Article  CAS  Google Scholar 

  8. Delaunay C et al (2010) Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop Traumatol Surg Res 96(8):894–904

    Article  CAS  Google Scholar 

  9. Boonta W et al (2020) The synthesis of nitrogen and sulfur co-doped graphene quantum dots for fluorescence detection of cobalt (ii) ions in water. Mater Chem Front 4(2):507–516. https://doi.org/10.1039/c9qm00587k

    Article  CAS  Google Scholar 

  10. Mazur F et al (2018) Core-satellite gold nanoparticle biosensors for monitoring cobalt ions in biological samples. Sensors Actuators B Chem 268:182–187

    Article  CAS  Google Scholar 

  11. Kumar VV et al (2015) Hyperbranched polyethylenimine-based sensor of multiple metal ions (Cu2+, cobalt and Fe2+): colorimetric sensing via coordination or AgNP formation. RSC Adv 5(107):88125–88132

    Article  Google Scholar 

  12. Kumar VV, Anthony SP (2015) Heavy metal cation and anion sensing studies of N-(2-hydroxybenzyl)-isopropylamine surface functionalized AgNPs. New J Chem 39(2):1308–1314

    Article  Google Scholar 

  13. Vashisht D et al (2019) Colorimetric chemosensor based on coumarin skeleton for selective naked eye detection of cobalt (II) ion in near aqueous medium. Sensors Actuators B Chem 280:219–226

    Article  CAS  Google Scholar 

  14. Shi J, Lu C, Yan D, Ma L (2013) High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosens Bioelectron 45:58–64. https://doi.org/10.1016/j.bios.2013.01.056

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Yang, Jianxiu Du, and Zhen Wang. Fluorescein and its derivatives: new coreactants for luminol chemiluminescence reaction and its application for sensitive detection of cobalt ion. Talanta 191 (2019): 422–427

  16. Yadav R et al (2018) Efficient chemiluminescence by aptamer–reactant platform combination with activated Ag–Au alloy nanoparticles for cobalt detection. Int J Environ Anal Chem 98(6):570–581

    Article  CAS  Google Scholar 

  17. Chu Z-Y et al (2019) Monitoring and removal of trace heavy metal ions via fluorescence resonance energy transfer mechanism: in case of silver ions. Chem Eng J 121927

  18. Mahajan PG et al (2018) Selective detection of Co2+ by fluorescent nano probe: diagnostic approach for analysis of environmental samples and biological activities. Spectrochim Acta A Mol Biomol Spectrosc 198:136–144

    Article  CAS  Google Scholar 

  19. Khorshidi N, Niazi A (2016) Analytical approaches for the determination of cobalt, nickel and copper by aeration-assisted homogeneous liquid–liquid microextraction and flame atomic absorption spectrometry. Sep Sci Technol 51(10):1675–1683

    Article  CAS  Google Scholar 

  20. Kokkinos C, Economou A (2016) Microfabricated chip integrating a bismuth microelectrode array for the determination of trace cobalt (II) by adsorptive cathodic stripping voltammetry. Sensors Actuators B Chem 229:362–369

    Article  CAS  Google Scholar 

  21. Homocianu M et al (2019) Metal ions sensing properties of some phenylquinoxaline derivatives. Spectrochim Acta A Mol Biomol Spectrosc 215:371–380

    Article  CAS  Google Scholar 

  22. Zhao C et al (2019) Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt (II) ions and pH sensing. Microchem J 147:183–190

    Article  CAS  Google Scholar 

  23. Mehta VN, Mungara AK, Kailasa SK (2013) Dopamine dithiocarbamate functionalized silver nanoparticles as colorimetric sensors for the detection of cobalt ion. Anal Methods 5(7):1818–1822

    Article  CAS  Google Scholar 

  24. Contino A, Maccarrone G, Zimbone M, Reitano R, Musumeci P, Calcagno L, Oliveri IP (2016) Tyrosine capped silver nanoparticles: a new fluorescent sensor for the quantitative determination of copper (II) and cobalt (II) ions. J Colloid Interface Sci 462:216–222

    Article  CAS  Google Scholar 

  25. Mochi F et al (2018) Plasmonic sensor based on interaction between silver nanoparticles and Ni2+ or Cobalt in water. Nanomaterials 8.7:488. https://doi.org/10.3390/nano8070488

    Article  CAS  Google Scholar 

  26. Sung HK, Oh SY, Park C, Kim Y (2013) Colorimetric detection of cobalt ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir 29(28):8978–8982

    Article  CAS  Google Scholar 

  27. Patel UB et al (2013) 4-Aminothiophenol functionalized gold nanoparticles as colorimetric sensors for the detection of cobalt using UV–visible spectrometry. Res Chem Intermed 39(2):771–779

    Article  CAS  Google Scholar 

  28. Zhang M, Liu Y-Q, Ye B-C (2012) Colorimetric assay for parallel detection of Cd 2+, Ni 2+ and Co 2+ using peptide-modified gold nanoparticles. Analyst 137(3):601–607

    Article  CAS  Google Scholar 

  29. Shabaninezhad, Masoud, and Guda Ramakrishna (2019) Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics: 1–13

  30. Zhu, Dongxu, et al. (2020) Effects of surface ligands on localized surface plasmon resonance and stabilization of Cu2-xSe nanocrystals. Appl Surf Sci 145327

  31. Du J et al (2018) Colorimetric detection of cadmium in water using L-cysteine functionalized gold–silver nanoparticles. Anal Lett 51(18):2906–2919

    Article  CAS  Google Scholar 

  32. Ma Y et al (2016) Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of cobalt. Spectrochim Acta A Mol Biomol Spectrosc 153:206–211

    Article  CAS  Google Scholar 

  33. Amirjani A, Koochak NN, Haghshenas DF (2018) Synthesis of silver nanotriangles with tunable edge length: a promising candidate for light harvesting purposes within visible and near–infrared ranges. Mater Res Express 6.3:036204. https://doi.org/10.1088/2053-1591/aaf624

    Article  CAS  Google Scholar 

  34. Maity D et al (2014) Calix [4] arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sensors Actuators B Chem 191:757–764

    Article  CAS  Google Scholar 

  35. Karami C, Taher MA (2018) Colorimetric sensor of cobalt ions in aqueous solution using gold nanoparticles modified with glycyrrhizic acid. Plasmonics 13(4):1315–1323

    Article  CAS  Google Scholar 

  36. Amirjani A, Haghshenas DF (2018) Modified Finke–Watzky mechanisms for the two-step nucleation and growth of silver nanoparticles. Nanotechnology 29.50:505602. https://doi.org/10.1088/1361-6528/aae3dd

    Article  CAS  Google Scholar 

  37. Brahim NB et al (2017) Interaction of l-cysteine functionalized CdSe quantum dots with metallic cations and selective binding of cobalt in water probed by fluorescence. Sensors and Actuators B:Chemical 243:489–499

    Article  Google Scholar 

  38. Nekahi A, Marashi SPH, Haghshenas Fatmesari D (2016) High yield polyol synthesis of round-and sharp-end silver nanowires with high aspect ratio. Mater Chem Phys 184:130–137

    Article  CAS  Google Scholar 

  39. Amirjani A, Fatmehsari DH, Marashi P (2015) Interactive effect of agitation rate and oxidative etching on growth mechanisms of silver nanowires during polyol process. J Exp Nanosci 10.18:1387–1400

    Article  Google Scholar 

  40. Bakar N et al (2015) Self-assembly of high density of triangular silver nanoplate films promoted by 3-aminopropyltrimethoxysilane. Appl Sci 5(3):209–221

    Article  Google Scholar 

  41. Requena S, Doan H, Raut S, D'Achille A, Gryczynski Z, Gryczynski I, Strzhemechny YM (2016) Linear dichroism and optical anisotropy of silver nanoprisms in polymer films. Nanotechnology 27(32):325704. https://doi.org/10.1088/0957-4484/27/32/325704

    Article  CAS  PubMed  Google Scholar 

  42. Wu C, Xue Z, Wei J (2015) Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res Lett 10(1):354. https://doi.org/10.1186/s11671-015-1058-1

    Article  CAS  PubMed Central  Google Scholar 

  43. Upadhyay LSB, Verma N (2014) Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization. Bioprocess Biosyst Eng 37(11):2139–2148

    Article  CAS  Google Scholar 

  44. Zayats M et al (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5.1:21–25

    Article  Google Scholar 

  45. Song EJ, Kang J, You GR, Park GJ, Kim Y, Kim SJ, Kim C, Harrison RG (2013) A single molecule that acts as a fluorescence sensor for zinc and cadmium and a colorimetric sensor for cobalt. Dalton Trans 42(43):15514–15520

    Article  CAS  Google Scholar 

  46. Lee H et al (2017) Bimetallic Au/Ag nanoframes as spectator for Cobalt ion. J Ind Eng Chem 48:235–241

    Article  CAS  Google Scholar 

  47. Amirjani A, Haghshenas DF (2019) Facile and on− line colorimetric detection of Hg2+ based on localized surface plasmon resonance (LSPR) of Ag nanotriangles. Talanta 192:418–423

    Article  CAS  Google Scholar 

  48. Kvitek L et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Fatmehsari Haghshenas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namazi Koochak, N., Rahbarimehr, E., Amirjani, A. et al. Detection of Cobalt Ion Based on Surface Plasmon Resonance of L-Cysteine Functionalized Silver Nanotriangles. Plasmonics 16, 315–322 (2021). https://doi.org/10.1007/s11468-020-01289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01289-2

Keywords

Navigation