Skip to main content
Log in

Tunable Optical Antennas Using Vanadium Dioxide Metal-Insulator Phase Transitions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Here, we investigate the possibility of exploiting the insulator-to-metal transition in vanadium dioxide (VO2) to tune and optically control the resonances of dipole nanoantennas in the visible near-infrared region. We compare the results obtained in the case of antennas completely made by VO2 with those of previous works and highlight the key role of the substrate to perform dynamical tuning. We also present a highly efficient configuration composed of dipole gold antenna loaded with VO2 and give some general guidelines to optimally exploit phase transitions to tune nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makarov SV, Zalogina AS, Tajik M, Zuev DA, Rybin MV, Kuchmizhak AA, Juodkazis S, Kivshar Y (2017) Light-induced tuning and reconfiguration of NanophotonicStructures. Laser Photonics Rev 11(5):1700108

    Article  CAS  Google Scholar 

  2. Holsteen AL, Raza S, Fan P, Kik PG, Brongersma ML (2017) Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science 358(6369):1407

    Article  CAS  Google Scholar 

  3. Basov DN, Averitt RD, Hsieh D (2017) Towards properties on demand in quantum materials. Nat Mater 16:1077 EP

    Article  CAS  Google Scholar 

  4. Zheludev NI, Kivshar Y (2012) From metamaterials to metadevices. Nat Mater 11:917

    Article  CAS  Google Scholar 

  5. Krasnok MTA, Alù A (2017) Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today 21(1):8

    Article  CAS  Google Scholar 

  6. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193

    Article  CAS  Google Scholar 

  7. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642

    Article  Google Scholar 

  8. Novotny L, van Hulst N (2011) Antennas for light. Nat Photonics 5:83

    Article  CAS  Google Scholar 

  9. Yu N, Genevet P, Kats MA, Aieta F, Tetienne J, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333

    Article  CAS  Google Scholar 

  10. Caldarola M, Albella P, Cortes E, Rahmani M, Roschuk T, Grinblat G, Oulton RF, Bragas AV, Maier SA (2015) Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat Commun 6:7915 EP

    Article  CAS  Google Scholar 

  11. Alessandri I, Lombardi JR (2016) Enhanced Raman scattering with dielectrics. Chem Rev 116(24):14921

    Article  CAS  Google Scholar 

  12. Nicholls LH, Rodríguez-fortuno FJ , Nasir ME, Córdova-Castro RM, Olivier N, Wurtz GA, Zayats AV (2017) Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics 11(10):628

    Article  CAS  Google Scholar 

  13. Miller KJ, Haglund RF, Weiss SM (2018) Optical phase change materials in integrated silicon photonic devices: review. Opt Mater Express 8(8):2415

    Article  CAS  Google Scholar 

  14. Wang YYH, Wang L (2014) Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl Phys Lett 105:071907

    Article  CAS  Google Scholar 

  15. Ou JY, Plum E, Jiang L, Zheludev NI (2011) Reconfigurable photonic metamaterials. Nano Lett 11(5):2142

    Article  CAS  Google Scholar 

  16. Emani NK, Chung TF, Ni X, Kildishev AV, Chen YP, Boltasseva A (2012) Electrically tunable damping of plasmonic resonances with graphene. Nano Lett 12(10):5202

    Article  CAS  Google Scholar 

  17. Zhu Z, Evans PG, Haglund RF Jr, Valentine JG (2017) Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett 17:4881

    Article  CAS  Google Scholar 

  18. Zhou Y, Chen X, Ko C, Yang Z, Mouli C, Ramanathan S (2013) Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett 34(2):220

    Article  CAS  Google Scholar 

  19. Chen J, Yuan J, Zhang Q, Ge H, Tang C, Liu Y, Guo B (2018) Dielectric waveguide-enhanced localized surface plasmon resonance refractive index sensing. Optical Materials Espress 8(2):342

    Article  CAS  Google Scholar 

  20. Chen J, Nie H, Zha T, Mao P, Tang C, Shen X, Park G (2018) Optical magnetic field enhancement by strong coupling in metamaterials. J Light Technol 36(13):2791

    Article  CAS  Google Scholar 

  21. Chen L, Wei Y, Zang X, Zhu Y, Zhuang S (2016) Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Sci Rep 6:22027 EP

    Article  CAS  Google Scholar 

  22. Chen J, Zhang Q, Peng C, Tang C, Shen X, Deng L, Park G (2018) Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing. IEEE Photon Technol Lett 30(8):728

    Article  CAS  Google Scholar 

  23. Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J, Li D, Yu Y (2017) Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing. Opt Express 25(4):3675

    Article  Google Scholar 

  24. Chen J, Zha T, Zhang T, Tang C, Yu Y, Liu Y, Zhang L (2017) Enhanced magnetic fields at optical frequency by diffraction coupling of magnetic resonances in lifted metamaterials. J Light Technol 35(1):71

    Article  Google Scholar 

  25. Chen J, Nie H, Peng C, Qi S, Tang C, Zhang Y, Wang L, Park GS (2018) Enhancing the magnetic plasmon resonance of three-dimensional optical metamaterials via strong coupling for high-sensitivity sensing. J Light Technol 36(16):3481

    Article  CAS  Google Scholar 

  26. Chen J, Tang C, Mao P, Peng C, Gao D, Yu Y, Wang Q, Zhang L (2016) Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photonics J 8(1):1

    Google Scholar 

  27. Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W (2017) Defect-induced Fano resonances in corrugated plasmonic metamaterials. Advanced Optical Materials 5(8):1600960

    Article  CAS  Google Scholar 

  28. Muskens OL, Bergamini L, Wang Y, Gaskell JM, Zabala N, de Groot C, Sheel DW, Aizpurua J (2016) Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light: Science &Amp; Applications 5:e16173 EP

    Article  CAS  Google Scholar 

  29. Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balatsky AV, Maple MB, Keilmann F, Kim HT, Basov DN (2007) Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318(5857):1750

    Article  CAS  Google Scholar 

  30. Cilento F, Giannetti C, Ferrini G, dal conte S, Sala T, Coslovich G, Rini M, Cavalleri A, Parmigiani F (2010) Ultrafast insulator-to-metal phase transition as a switch to measure the spectrogram of a supercontinuum light pulse. Appl Phys Lett 96:021102

    Article  CAS  Google Scholar 

  31. Appavoo K, Haglund RF Jr (2014) Polarization selective phase-change nanomodulator. Sci Rep 4:6771

    Article  CAS  Google Scholar 

  32. Locatelli A, De angelis C, Modotto D, Boscolo S, Sacchetto F, Midrio M, Capobianco AD, Pigozzo FM, Someda CG (2009) Modeling of enhanced field confinement and scattering by optical wire antennas. Optics Express 17(19):16792

    Article  Google Scholar 

  33. Olmon RL, Slovick B, Johnson TW, Shelton D, Oh SH, Boreman GD, Rashke MB (2012) Optical dielectric function of gold. Physical Review B 86(23):235147

    Article  CAS  Google Scholar 

  34. Kana Kana JB, Ndjaka JM, Vignaud G, Gibaud A, Maaza M (2011) Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Opt Commun 284:807

    Article  CAS  Google Scholar 

  35. Park JB, Lee IM, Lee SY, Kim K, Choi D, Song EY, Lee B (2013) Tunable subwavelength hot spot of dipole nanostructure based on VO2 phase transition. Opt Express 21(13):15205

    Article  CAS  Google Scholar 

  36. Alù A, Engheta N (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Nat Photonics 2:307

    Article  Google Scholar 

  37. Engheta N, Salandrino A, Alù A (2005) Circuit elements at optical frequencies: nano-inductors, nano- capacitors and nano-resistors. Phys Rev Lett 95:095504

    Article  CAS  Google Scholar 

  38. Large N, Abb M, Aizpurua J, Muskens OL (2010) Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett 10(5):1741

    Article  CAS  Google Scholar 

  39. Novotny L (2007) Effective wavelength scaling for optical antennas. Physical Review Letters 96(26):266802

    Article  CAS  Google Scholar 

  40. Alu A, Engheta N (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 101(4):043901

    Article  CAS  Google Scholar 

  41. De Ceglia D, Vincenti MA, De Angelis C, Locatelli A, Haus JW, Scalora M (2015) Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Opt Express 23(2):1715

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with Francesco Banfi, Marco Gandolfi, Luca Carletti, and Davide Rocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tognazzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tognazzi, A., Locatelli, A., Vincenti, M.A. et al. Tunable Optical Antennas Using Vanadium Dioxide Metal-Insulator Phase Transitions. Plasmonics 14, 1283–1288 (2019). https://doi.org/10.1007/s11468-019-00917-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00917-w

Keywords

Navigation