Skip to main content
Log in

Structural, Optical and Plasmonic Properties of Ag-TiO2 Hybrid Plasmonic Nanostructures with Enhanced Photocatalytic Activity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Hybrid plasmonic nanostructures consisting of Ag nanoparticles decorated TiO2 nanorods with highly enhanced photocatalytic activity were synthesized by a facile wet chemical method. The structural, optical, plasmonic and photocatalytic properties of the synthesized Ag-TiO2 hybrid nanostructures were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible absorption spectroscopy. The photocatalytic activities of the as-synthesized Ag-TiO2 hybrid nanostructures were evaluated by studying sun light-driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water. The results showed that Ag-TiO2 hybrid nanostructures exhibit highly enhanced photocatalytic activity towards degradation of MB and MO dyes and the photocatalytic efficiency increased with increase in Ag nanoparticle loading. The mechanism underlying the highly enhanced photocatalytic activity of Ag-TiO2 nanohybrids is proposed. We attribute the observed enhanced photocatalytic activity of Ag-TiO2 hybrid nanostructures to the efficient separation of photogenerated charge carriers in TiO2 due to the electron scavenging action of Ag nanoparticles and the improved sun light utilization by the plasmonic nanohybrids originating from the surface plasmon resonance (SPR) absorption of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  2. Kuriakose S, Choudhary V, Satpati B, Mohapatra S (2014) Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Phys Chem Chem Phys 16:17560–17568

    Article  CAS  PubMed  Google Scholar 

  3. Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys 16:12741–12749

    Article  CAS  PubMed  Google Scholar 

  4. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  5. Kuriakose S, Satpati B, Mohapatra S (2015) Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys Chem Chem Phys 17:25172–25181

    Article  CAS  Google Scholar 

  6. Kuriakose S, Avasthi DK, Mohapatra S (2015) Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method. Beilstein J Nanotechnology 6:928–937

    Article  CAS  Google Scholar 

  7. Horikoshi S, Hidaka H (2002) Environmental remediation by an integrated microwave/UV-illumination method. 1. Microwave-assisted degradation of Rhodamine-B dye in aqueous TiO2 dispersions. Environ Sci Technol 36:1357–1366

    Article  CAS  PubMed  Google Scholar 

  8. Kuriakose S, Bhardwaj N, Singh J, Satpati B, Mohapatra S (2013) Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein J Nanotechnology 4:763–770

    Article  CAS  Google Scholar 

  9. Singh J, Mohapatra S (2015) Thermal evolution of structural, optical and photocatalytic properties of TiO2 nanostructures. Adv Mater Lett 6:924–929

    Article  CAS  Google Scholar 

  10. Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042

    Article  CAS  Google Scholar 

  11. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Japan J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  12. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B Environ 39:75–90

    Article  CAS  Google Scholar 

  13. Kubacka A, García MF, Colon G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  CAS  PubMed  Google Scholar 

  14. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  15. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  PubMed  Google Scholar 

  16. Zaleska A (2008) Doped-TiO2: a review. Recent Patents Eng 2:157–164

    Article  CAS  Google Scholar 

  17. Pernik DR, Tvrdy K, Radich JG, Kamat PV (2011) Tracking the adsorption and electron injection rates of CdSe quantum dots on TiO2: linked versus direct attachment. J Phys Chem C 115:13511–13519

    Article  CAS  Google Scholar 

  18. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051

    Article  CAS  Google Scholar 

  19. Naya S, Nikawa T, Kimura K, Tada H (2013) One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catal 3:903–907

    Article  CAS  Google Scholar 

  20. Chan SC, Barteau MA (2005) Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition. Langmuir 21:5588–5595

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129:4538–4539

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125

    Article  CAS  Google Scholar 

  23. Liu R, Wang P, Wang X, Yu H, Yu J (2012) UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst. J Phys Chem C 116:17721–17728

    Article  CAS  Google Scholar 

  24. Zhang X, Chen YL, Liu RS, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401

    Article  CAS  PubMed  Google Scholar 

  25. Sung-Suh HM, Choi JR, Hah HJ, Koo SM, Bae YC (2004) Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A Chem 163:37–44

    Article  CAS  Google Scholar 

  26. Hirakawa T, Kamat PV (2004) Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir 20:5645–5647

    Article  CAS  PubMed  Google Scholar 

  27. Chuang HY, Chen DH (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20:105704

    Article  CAS  PubMed  Google Scholar 

  28. Daniel LS, Nagai H, Yoshida N, Sato M (2013) Photocatalytic activity of vis-responsive Ag-nanoparticles/TiO2 composite thin films fabricated by molecular precursor method (MPM). Catalysts 3:625–645

    Article  CAS  Google Scholar 

  29. Dhabbe RS, Kadam AN, Suwarnkar MB, Kokate MR, Garadkar KM (2014) Enhancement in the photocatalytic activity of Ag loaded N-doped TiO2 nanocomposite under sunlight. J Mater Sci 25:3179–3189

    CAS  Google Scholar 

  30. Choi HC, Jung YM, Kim SB (2005) Size effects in the Raman spectra of TiO2 nanoparticles. Vibrat Spec 37:33–38

    Article  CAS  Google Scholar 

  31. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spectrosc 7:321

    Article  Google Scholar 

  32. Rodríguez-González V, Juárez-Ramírez I, Zanella R, Zarazúa ME, Torres-Martínez LM (2008) Silver nanoparticles incorporated into Na2Ti6O13 microfibers. J Ceram Proc Res 9:601–605

    Google Scholar 

  33. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519

    Article  CAS  Google Scholar 

  34. Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Preparation and photoluminescence of highly ordered TiO 2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  CAS  Google Scholar 

  35. Xin B, Jing L, Ren Z, Wang B, Fu H (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809

    Article  CAS  PubMed  Google Scholar 

  36. Seery MK, George R, Floris P, Pillai SC (2007) Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol A Chem 189:258–263

    Article  CAS  Google Scholar 

  37. Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570

    Article  CAS  Google Scholar 

  38. Li J, Xu J, Dai WL, Fan K (2009) Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twist like helix structure. J Phys Chem C 113:8343–8349

    Article  CAS  Google Scholar 

  39. Kuriakose S, Choudhary V, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method. Beilstein J Nanotechnol 5:639–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170

    Article  CAS  Google Scholar 

  41. Chen Z, Fang L, Dong W, Zheng F, Shena M, Wang J (2014) Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J Mater Chem A 2:824

    Article  CAS  Google Scholar 

  42. Liang YC, Wang CC, Kei CC, Hsueh YC, Cho WH, Perng TP (2011) Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. J Phys Chem C 115:9498–9502

    Article  CAS  Google Scholar 

  43. Wang Y, Liu L, Xu L, Meng C, Zhu WJ (2013) Ag/TiO2 nanofiber heterostructures: highly enhanced photocatalysts under visible light. J Appl Phys 113:174311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. S. Annapoorni for extending the facility for PL measurements and Prof. Vinay Gupta for extending the Raman facility and would like to thank Srikanth and Gurpreet for their help in XRD studies and Raman measurements, respectively. The authors are thankful to Department of Science and Technology (DST), New Delhi, for providing XRD and AFM facilities at Guru Gobind Singh Indraprastha University, New Delhi, under Nano Mission (SR/NM/PG-17/2007). JS gratefully acknowledges the support from UGC, New Delhi, in the form of Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Satpati, B. & Mohapatra, S. Structural, Optical and Plasmonic Properties of Ag-TiO2 Hybrid Plasmonic Nanostructures with Enhanced Photocatalytic Activity. Plasmonics 12, 877–888 (2017). https://doi.org/10.1007/s11468-016-0339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0339-6

Keywords

Navigation