Skip to main content
Log in

Synthesis and Plasmonic Property of Ag Nanorods

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, Ag nanorods (AgNRs) with different aspect ratios (ARs) were prepared by a seed-mediated fast growth approach. The possible growth mechanism of Ag nanostructures was proposed. With a strong interaction between CTAB and Ag seeds, the reduced Ag atoms agglomerated and attached to the performed Ag nanoparticles, where CTAB molecule layer plays a role of rod-like micelles template, leading to one dimensional growth of Ag atoms into AgNRs. The influences of the reaction conditions were discussed on the yield of AgNRs. The surface plasmon resonance (SPR) of AgNRs was studied by finite-difference time-domain (FDTD) simulations. The simulated results indicate that the transverse surface plasmon resonance (SPRT) has no obvious shifting, whereas the longitudinal surface plasmon resonance (SPRL) shows a significant redshift with the increase of AR of AgNRs, which agrees well with the experimental variation trend. It is also found that the absorption and scattering of AgNRs are stronger than that of Au nanorods (AuNRs), which is in accordance with the Raman signal enhancement by AgNRs compared with that of AuNRs, indicating that AgNR is a promising candidate in bio-molecular detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo SJ, Dong SJ, Wang EK (2009) Rectangular silver nanorods: controlled preparation, liquid-liquid interface assembly, and application in surface-enhanced Raman scattering. Cryst Growth Des 9(1):372–377

    Article  CAS  Google Scholar 

  2. Wiley B, Sun YG, Xia YN (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076

    Article  CAS  Google Scholar 

  3. Guidez EB, Aikens CM (2013) Diameter dependence of the excitation spectra of silver and gold nanorods. J Phys Chem C 117(23):12325–12336

    Article  CAS  Google Scholar 

  4. Gutierrez-Sanchez C, Pita M, Vaz-Dominguez C, Shleev S, De Lacey AL (2012) Gold nanoparticles as electronic bridges for laccase-based biocathodes. J Am Chem Soc 134(41):17212–17220

    Article  CAS  Google Scholar 

  5. Li H, Yuan KD, Zhang Y, Wang J (2013) Synthesis of Au-SiO2 asymmetric clusters and their application in ZnO nanosheet-based dye-sensitized solar cells. ACS Appl Mater Interfaces 5(12):5601–5608

    Article  CAS  Google Scholar 

  6. Guiton BS, Iberi V, Li SZ, Leonard DN, Parish CM, Kotula PG, Varela M, Schatz GC, Pennycook SJ, Camden JP (2011) Correlated optical measurements and plasmon mapping of silver nanorods. Nano Lett 11(8):3482–3488

    Article  CAS  Google Scholar 

  7. Mondal S, Rana U, Malik S (2015) Facile decoration of polyaniline fiber with Ag nanoparticles for recyclable SERS substrate. ACS Appl Mater Interfaces 7(19):10457–10465

    Article  CAS  Google Scholar 

  8. Stranahan SM, Titus EJ, Willets KA (2011) SERS orientational imaging of silver nanoparticle dimers. J Phys Chem Lett 2(21):2711–2715

    Article  CAS  Google Scholar 

  9. Mallick S, Sun IC, Kim K, Yi DK (2013) Silica coated gold nanorods for imaging and photo-thermal therapy of cancer cells. J Nanosci Nanotechnol 13(5):3223–3229

    Article  CAS  Google Scholar 

  10. Zhang ZJ, Wang LM, Wang J, Jiang XM, Li XH, Hu ZJ, Ji YH, Wu XC, Chen CY (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423

    Article  CAS  Google Scholar 

  11. Sugiura T, Matsuki D, Okajima J, Komiya A, Mori S, Maruyama S, Kodama T (2015) Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res 8(12):3842–3852

    Article  CAS  Google Scholar 

  12. Masson JF, Breault-Turcot J, Faid R, Poirier-Richard HP, Yockell-Lelievre H, Lussier F, Spatz JP (2014) Plasmonic nanopipette biosensor. Anal Chem 86(18):8998–9005

    Article  CAS  Google Scholar 

  13. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111(6):3858–3887

    Article  CAS  Google Scholar 

  14. Yu K, Sader JE, Zijlstra P, Hong M, Xu QH, Orrit M (2014) Probing silver deposition on single gold nanorods by their acoustic vibrations. Nano Lett 14(2):915–922

    Article  CAS  Google Scholar 

  15. Horiguchi Y, Kanda T, Torigoe K, Sakai H, Abe M (2014) Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities. Langmuir 30(3):922–928

    Article  CAS  Google Scholar 

  16. Wang JH, Huang H, Zhang DQ, Chen M, Zhang YF, Yu XF, Zhou L, Wang QQ (2015) Synthesis of gold/rare-earth-vanadate core/shell nanorods for integrating plasmon resonance and fluorescence. Nano Res 8(8):2548–2561

    Article  CAS  Google Scholar 

  17. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  18. Wang Y, Wan D, Xie S, Xia X, Huang CZ, Xia Y (2013) Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 7(5):4586–4594

    Article  CAS  Google Scholar 

  19. Ding XL, Kan CX, Mo B, Ke SL, Cong B, Xu LH, Zhu JJ (2012) Synthesis of polyhedral Ag nanostructures by a PVP-assisted hydrothermal method. J Nanopart Res 14(8)

  20. Kan CX, Wang CS, Li HC, Qi JS, Zhu JJ, Li ZS, Shi DN (2010) Gold microplates with well-defined shapes. Small 6(16):1768–1775

    Article  CAS  Google Scholar 

  21. Cho EC, Liu Y, Xia YN (2010) A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew Chem Int Ed 49(11):1976–1980

    Article  CAS  Google Scholar 

  22. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110(9):3990–3994

    Article  CAS  Google Scholar 

  23. Ye XC, Zheng C, Chen J, Gao YZ, Murray CB (2013) Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13(2):765–771

    Article  CAS  Google Scholar 

  24. Ke SL, Kan CX, Liu JS, Cong B (2013) Controlled assembly of gold nanorods using tetrahydrofuran. RSC Adv 3(8):2690–2696

    Article  CAS  Google Scholar 

  25. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  26. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393

    Article  CAS  Google Scholar 

  27. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  28. Wang LB, Zhu YY, Xu LG, Chen W, Kuang H, Liu LQ, Agarwal A, Xu CL, Kotov NA (2010) Side-by-Side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Int Ed 49(32):5472–5475

    Article  CAS  Google Scholar 

  29. Huang HW, Qu CT, Liu XY, Huang SW, Xu ZJ, Zhu YJ, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47(24):6897–6899

    Article  CAS  Google Scholar 

  30. Wang J, Zhang P, Li CM, Li YF, Huang CZ (2012) A highly selective and colorimetric assay of lysine by molecular-driven gold nanorods assembly. Biosens Bioelectron 34(1):197–201

    Article  CAS  Google Scholar 

  31. Matthews JR, Payne CM, Hafner JH (2015) Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced Raman scattering. Langmuir 31(36):9893–9900

    Article  CAS  Google Scholar 

  32. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  33. Lu Y, Yin YD, Li ZY, Xia YN (2002) Synthesis and self-assembly of Au@SiO2 core-shell colloids. Nano Lett 2(7):785–788

    Article  CAS  Google Scholar 

  34. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Article  CAS  Google Scholar 

  35. Zhang J, Langille MR, Mirkin CA (2011) Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds. Nano Lett 11(6):2495–2498

    Article  CAS  Google Scholar 

  36. Pietrobon B, McEachran M, Kitaev V (2009) Synthesis of size-controlled faceted pentagonal silver nanorrods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3(1):21–26

    Article  CAS  Google Scholar 

  37. Zhuo XL, Zhu XZ, Li Q, Yang Z, Wang JF (2015) Gold nanobipyramid-directed growth of length-variable silver nanorods with multipolar plasmon resonances. ACS Nano 9(7):7523–7535

    Article  CAS  Google Scholar 

  38. Li Q, Zhuo XL, Li S, Ruan QF, Xu QH, Wang JF (2015) Production of monodisperse gold nanobipyramids with number percentages approaching 100 % and evaluation of their plasmonic properties. Adv Opt Mater 3(6):801–812

    Article  CAS  Google Scholar 

  39. Liu J, Kan C, Li Y, Xu H, Ni Y, Shi D (2014) End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol). Appl Phys Lett 104(25):253105

    Article  Google Scholar 

  40. Mahmoud MA, El-Sayed MA (2013) Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 4(9):1541–1545

    Article  CAS  Google Scholar 

  41. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14(1):80–82

    Article  CAS  Google Scholar 

  42. Yang JH, Dennis RC, Sardar DK (2011) Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates. Mater Res Bull 46(7):1080–1084

    Article  CAS  Google Scholar 

  43. Liu JS, Kan CX, Li YL, Xu HY, Ni Y, Shi DN (2014) Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods. Plasmonics 9(5):1007–1014

    Article  CAS  Google Scholar 

  44. Lee J, Seo J, Kim D, Shin S, Lee S, Mahata C, Lee HS, Min BW, Lee T (2014) Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates. ACS Appl Mater Interfaces 6(12):9053–9060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (No.11274173, 11374159), Fundamental Research Funds for the Central Universities (NZ2015101), Funding of Jiangsu Innovation Program for Graduate Education (KYZZ_0091), Post-graduate Innovation Lab Open Funds (KFJJ20150801), and Science Foundation of Nanjing Institute of Technology (QKJB201409). This work was also sponsored by the Qing-Lan Project and the Priority Academic Program Development of Jiangsu Higher Education Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixia Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Kan, C., Wei, J. et al. Synthesis and Plasmonic Property of Ag Nanorods. Plasmonics 11, 1645–1652 (2016). https://doi.org/10.1007/s11468-016-0257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0257-7

Keywords

Navigation