Skip to main content
Log in

Tuning of Light Trapping and Surface Plasmon Resonance in Silver Nanoparticles/c-Si Structures for Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we investigate silver (Ag) nanoparticle-related plasmonic effect on light absorption in Si substrate. Ag nanoparticles (Ag-NPs) deposited on top of Si were used to capture and couple incident light into these structures by forward scattering. We demonstrate that we can control nanoparticle size and shape while varying deposition time and annealing parameters. By the increase of the total time of the reaction process, morphology of Ag-NPs evolutes affecting the number and the width of surface plasmon resonance peaks, whereas for changed annealing parameters (temperature and time), the effect is more pronounced on the broadening and the position of peaks. Specific morphology of Ag-NPs can exhibit an interesting enhancement of optical properties which enables plasmon-related application in photovoltaic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pillai S, Catchpole KR, Trupke T, Green M (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  2. Atwater HA, Polman A (2010) Plasmonics for improved photovol- taic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  3. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    Article  CAS  Google Scholar 

  4. Tsai FJ, Wang JY, Huang JJ, Kiang YW, Yang CC (2010) Absorption enhancement of an amourphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles. Opt Express 18:207–220

    Article  Google Scholar 

  5. Le KQ, Bienstman P (2010) Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes. Plasmonics 26:331–337

    Google Scholar 

  6. Beck FJ, Verhagen E, Mokkapati S, Polman A, Catchpole KR (2011) Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express 19:146–156

    Article  Google Scholar 

  7. Schmid M, Andrae P, Manley P (2014) Plasmonic and photonic scattering and near fields of nanoparticles. Nanoscale Res Lett 9:50

    Article  Google Scholar 

  8. Catchpole KR, Polman A (2008) Design principles for particles enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  9. Stuart HR, Hall DG (1998) Island size effects in nanoparticles enhanced photodetectors. Appl Phys Lett 73:3815

    Article  CAS  Google Scholar 

  10. Schadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  11. Spinelli P, Hebbink M, de Waele R, Black L, Lenzmann F, Polman A (2011) Optical impedance matching using coupled plasmonic nanoparticles arrays. Nano Lett 11:1760–1765

    Article  CAS  Google Scholar 

  12. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19:3771–3782

    Article  CAS  Google Scholar 

  13. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photonics Rev 4:795–808

    Article  CAS  Google Scholar 

  14. Benabderrahmane Zaghouani R, Manai L, Dridi Rezgui B, Bessais B (2015) Study of silver nanparticles electroless growth and their impact on silicon properties. Chem J 1:90–94

    Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  16. Horcas I, Fernándes R, Gómez-Rodriguez JM, Colchero J, Gómez-Herrero J, Baró AM (2007) A WSXM: a software for scanning probe microscopy and tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  17. Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (2014) Handbook of nanomaterials properties. Springer, USA

    Book  Google Scholar 

  18. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Google Scholar 

  19. Meier M, Wokaun A (1983) Enhanced field of large metal particles: dynamic depolarization. Opt Lett 8:11

    Article  Google Scholar 

  20. Maier SA (2007) Plasmonics: fundamental and applications. Springer, USA

    Google Scholar 

  21. Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15:035005

    Article  Google Scholar 

  22. Su KH, Wei QH, Zhang X (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  23. Burrows CP, Barnes WL (2010) Large spectral extinction due to overlap of dipolar and quadrupolar modes of metallic nanoparticles in arrays. Opt Express 18:3187–3198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Manai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manai, L., Dridi Rezgui, B., Benabderrahmane Zaghouani, R. et al. Tuning of Light Trapping and Surface Plasmon Resonance in Silver Nanoparticles/c-Si Structures for Solar Cells. Plasmonics 11, 1273–1277 (2016). https://doi.org/10.1007/s11468-015-0171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0171-4

Keywords

Navigation