Skip to main content
Log in

Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate ultrafast plasmonic electron emission and acceleration from Ag nanolayers having different roughness. We obtained the spectrum of the electrons and found that the surface roughness deeply influences the properties of the electron spectra. Numerical simulations on propagating surface plasmons coupled to localized plasmons on surface grains support the observations. Applications related to ultrafast electron sources and ultrafast photocathodes are envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62

    Article  CAS  Google Scholar 

  2. Chen H, Boneberg J, Leiderer P (1993) Surface-plasmon-enhanced multiple-photon photoemission from Ag and Al films. Phys Rev B 47:9956–9958

    Article  CAS  Google Scholar 

  3. Irvine SE, Dechant A, Elezzabi AY (2004) Generation of 0.4-kev femtosecond electron pulses using impulsively excited surface plasmons. Phys Rev Lett 93:184–801

    Article  Google Scholar 

  4. Irvine SE, Dombi P, Farkas G, Elezzabi AY (2006) Influence of the carrier-envelope phase of few-cycle pulses on ponderomotive surface-plasmon electron acceleration. Phys Rev Lett 97:146– 801

    Article  Google Scholar 

  5. Kupersztych J, Monchicourt P, Raynaud M (2001) Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys Rev Lett 86:5180– 5183

    Article  CAS  Google Scholar 

  6. Teichmann SM, Rácz P, Ciappina MF, Pérez-Hernández JA, Thai A, Fekete J, Elezzabi AY, Veisz L, Biegert J, Dombi P (2015) Strong-field plasmonic photoemission in the mid-IR at < 1 GW/cm 2 intensity. Sci Rep 5(7584)

  7. Thomas S, Krüger M, Förster M, Schenk M, Hommelhoff P (2013) Probing of optical near-fields by electron rescattering on the 1 nm scale. Nano Lett 13(10):4790–4794. pMID: 24032432

    Article  CAS  Google Scholar 

  8. Tsang T, Srinivasan-Rao T, Fischer J (1991) Surface-plasmon field-enhanced multiphoton photoelectric emission from metal films. Phys Rev B 43:8870–8878

    Article  CAS  Google Scholar 

  9. Zawadzka J, Jaroszynski DA, Carey JJ, Wynne K (2000) Evanescent-wave acceleration of femtosecond electron bunches. Nucl Instrum Methods Phys Res, Sect A 445(1–3):324–328

    Article  CAS  Google Scholar 

  10. Zawadzka J, Jaroszynski DA, Carey JJ, Wynne K (2001) Evanescent-wave acceleration of ultrashort electron pulses. Appl Phys Lett 79(14):2130–2132

    Article  CAS  Google Scholar 

  11. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246

    Article  CAS  Google Scholar 

  12. Ren W, Dai Y, Cai H, Ding H, Pan N, Wang X (2013) Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor. Opt Express 21 (8):10,251–10,258

    Article  CAS  Google Scholar 

  13. Sarkar M, Besbes M, Moreau J, Bryche JF, Olivéro A, Barbillon G, Coutrot AL, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics 2(2):237–245

    Article  CAS  Google Scholar 

  14. Dombi P, Hörl A, Rácz P, Márton I, Trügler A, Krenn JR, Hohenester U (2013) Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett 13(2):674–678. pMID: 23339740

    Article  CAS  Google Scholar 

  15. Herink G, Solli DR, Gulde M, Ropers C (2012) Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483(3):190

    Article  CAS  Google Scholar 

  16. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. No. 111. k. in Springer tracts in modern physics. Springer. https://books.google.hu/books?id=ZLwrAAAAYAAJ

  17. Stefaniuk T, Wróbel P, Górecka E, Szoplik T (2014) Optimum deposition conditions of ultrasmooth silver nanolayers. Nanoscale Res Lett 9:153–161

    Article  Google Scholar 

  18. Stefaniuk T, Wróbel P, Trautman P, Szoplik T (2014) Ultrasmooth metal nanolayers for plasmonic applications: surface roughness and specific resistivity. Appl Opt 53:B237–B241

    Article  CAS  Google Scholar 

  19. Wróbel P, Stefaniuk T, Trzcinski M, Wronkowska AA, Wronkowski A, Szoplik T (2015) Ge wetting layer increases ohmic plasmon losses in ag film due to segregation. ACS Appl Mater Interfaces 7:8999–9005

    Article  Google Scholar 

  20. Trügler A, Tinguely JC, Krenn JR, Hohenau A, Hohenester U (2011) Influence of surface roughness on the optical properties of plasmonic nanoparticles. Phys Rev B 83:081–412

    Article  Google Scholar 

  21. Trügler A, Tinguely JC, Jakopic G, Hohenester U, Krenn JR, Hohenau A (2014) Near-field and SERS enhancement from rough plasmonic nanoparticles. Phys Rev B 89:165–409

    Article  Google Scholar 

  22. Rácz P, Irvine SE, Lenner M, Mitrofanov A, Baltuška A, Elezzabi AY, Dombi P (2011) Strong-field plasmonic electron acceleration with few-cycle, phase-stabilized laser pulses. Appl Phys Lett 98(11)

  23. Dombi P, Irvine SE, Rácz P, Lenner M, Kroó N, Farkas G, Mitrofanov A, Baltuška A, Fuji T, Krausz F, Elezzabi AY (2010) Observation of few-cycle, strong-field phenomena in surface plasmon fields. Opt Express 18(23):24,206–24,212

    Article  CAS  Google Scholar 

  24. Word RC, Fitzgerald J, Könenkamp R (2011) Photoelectron emission control with polarized light in plasmonic metal random structures. Appl Phys Lett 99(4)

  25. Farkas G, Horváth Z, Kertész I (1972) Influence of optical field emission on the nonlinear photoelectric effect induced by ultrashort laser pulses. Phys Lett A 39(3):231–232

    Article  CAS  Google Scholar 

  26. Keldysh LV (1965) Ionization in the field of a strong electromagnetic wave. Sov Phys - JETP 20(5):1307–1314

    Google Scholar 

  27. Aeschlimann M, Schmuttenmaer CA, Elsayed-Ali HE, Miller RJD, Cao J, Gao Y, Mantell DA (1995) Observation of surface enhanced multiphoto n photoemission from metal surfaces in the short pulse limit. J Chem Phys 102(21):8606–8613

    Article  CAS  Google Scholar 

  28. Földi P, Márton I, Német N, Ayadi V, Dombi P (2015) Few-cycle plasmon oscillations controlling photoemission from metal nanoparticles. Appl Phys Lett 106(1):013111

    Article  Google Scholar 

  29. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley

  30. Drude P (1900) Zur elektronentheorie der metalle. Ann Phys 306(3):566–613

    Article  Google Scholar 

  31. Dombi P, Rácz P (2008) Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Opt Express 16(5):2887–2893

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Hungarian Academy of Sciences (Lendület Grant). This work was also partially supported by the European Union and the European Social Fund through project entitled ELITeam at the University of Szeged, and by the National Research, Development and Innovation Office under Contract No. PD 109472, 109257 and 116688. We wish to thank Tomasz Szoplik for his help in sample fabrication and Pál Mezei for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Márton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márton, I., Ayadi, V., Rácz, P. et al. Ultrafast Plasmonic Electron Emission from Ag Nanolayers with Different Roughness. Plasmonics 11, 811–816 (2016). https://doi.org/10.1007/s11468-015-0113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0113-1

Keywords

Navigation