Skip to main content
Log in

Graphene-based Superlens for Subwavelength Optical Imaging by Graphene Plasmon Resonances

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recently, graphene plasmons with an excellent tenability by doping or gating have been drawing increasing interest. In this work, we designed graphene-based superlens to achieve subwavelength optical imaging. We systematically investigated the imaging property in monolayer and multi-layer graphene structures and discussed in detail the effects of possible physical quantities. We found that the image resolution of the graphene-based superlens could be better than λ/50, since graphene plasmons could significantly amplify evanescent waves carrying the high spatial frequency information of the object, and restore them at the image plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  3. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  4. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595

    Article  CAS  Google Scholar 

  5. Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729

    Article  CAS  Google Scholar 

  6. Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  7. Fu Y, Zhou X (2010) Plasmonic lenses: a review. Plasmonics 5:287–310

    Article  CAS  Google Scholar 

  8. Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92:117403

    Article  Google Scholar 

  9. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  10. Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  11. Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:196405

    Article  Google Scholar 

  12. Stauber T, Peres N, Geim A (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78:085432

    Article  Google Scholar 

  13. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Garcia de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81

    CAS  Google Scholar 

  14. Fei Z, Rodin SA, Andreev GO, Bao W, McLeod A, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85

    CAS  Google Scholar 

  15. Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  16. Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R 74:351–376

    Article  Google Scholar 

  17. García de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1:135–152

    Article  Google Scholar 

  18. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

  19. Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  20. Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  CAS  Google Scholar 

  21. Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813

    Article  CAS  Google Scholar 

  22. Yao Y, Kats MA, Genevet P, Yu NF, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264

    Article  CAS  Google Scholar 

  23. Popov VV, Polischuk OV, Davoyan AR, Ryzhii V, Otsuji T, Shur MS (2012) Plasmonic terahertz lasing in an array of graphene nanocavities. Phys Rev B 86:80–82

    Google Scholar 

  24. Thongrattanasiri S, Koppens FH, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:799–802

    Article  Google Scholar 

  25. Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7:4810–4817

    Article  CAS  Google Scholar 

  26. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  CAS  Google Scholar 

  27. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  CAS  Google Scholar 

  28. Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482–1485

    Article  Google Scholar 

  29. Yu R, Pruneri V, García de Abajo FJ (2015) Resonant visible light modulation with graphene. ACS Photonics 2:550–558

    Article  CAS  Google Scholar 

  30. Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5:411–415

    Article  CAS  Google Scholar 

  31. Xia F, Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P (2012) Graphene Plasmonic Terahertz Filters and Polarizers. APS March Meeting Abstracts, p 6002P

  32. Cheianov VV, Fal'ko V, Altshuler BL (2007) The focusing of electron flow and a Veselago lens in graphene pn junctions. Science 315:1252–1255

    Article  CAS  Google Scholar 

  33. Gómez S, Burset P, Herrera W, Yeyati AL (2012) Selective focusing of electrons and holes in a graphene-based superconducting lens. Phys Rev B 85:115411

    Article  Google Scholar 

  34. Silveirinha MG, Engheta N (2013) Spatial delocalization and perfect tunneling of matter waves: electron perfect lens. Phys Rev Lett 110:213902

    Article  Google Scholar 

  35. Xu HJ, Lu WB, Jiang Y, Dong ZG (2012) Beam-scanning planar lens based on graphene. Appl Phys Lett 100:051903

    Article  Google Scholar 

  36. Nasari H, Abrishamian MS (2014) Magnetically tunable focusing in a graded index planar lens based on graphene. J Optics 16:105502

    Article  Google Scholar 

  37. Wang G, Liu X, Lu H, Zeng C (2014) Graphene plasmonic lens for manipulating energy flow. Sci Rep 4:4073

    Google Scholar 

  38. Forati E, Hanson GW, Yakovlev AB, Alù A (2014) Planar hyperlens based on a modulated graphene monolayer. Phys Rev B 89:081410

    Article  Google Scholar 

  39. Li P, Taubner T (2012) Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano 6:10107–10114

    Article  CAS  Google Scholar 

  40. Kong X-T, Khan AA, Kidambi PR, Deng S, Yetisen AK, Dlubak B, Hiralal P, Montelongo Y, Bowen J, Xavier S, Jiang K, Amaratunga GAJ, Hofmann S, Wilkinson TD, Dai Q, Butt H (2015) Graphene based ultra-thin flat lenses. ACS Photonics 2:200–207

    Article  CAS  Google Scholar 

  41. Zhang T, Chen L, Li X (2013) Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. Opt Express 21:20888–20899

    Article  Google Scholar 

  42. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302

    Article  Google Scholar 

  43. Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Sold State Commun 146:351–355

    Article  CAS  Google Scholar 

  44. Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855–5863

    Article  CAS  Google Scholar 

  45. Mikhailov S, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99:016803

    Article  CAS  Google Scholar 

  46. He XY, Tao J, Meng B (2013) Analysis of graphene TE surface plasmons in the terahertz regime. Nanotechnology 24:345203

    Article  Google Scholar 

  47. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. J Phys Condens Matter 25:215301

    Article  Google Scholar 

  48. Stauber T, Gómez-Santos G (2012) Plasmons and near-field amplification in double-layer graphene. Phys Rev B 85:075410

    Article  Google Scholar 

  49. Tang CJ, Gao L (2004) Surface polaritons and imaging properties of a multi-layer structure containing negative-refractive-index materials. J Phys Condens Matter 16:4743–4751

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the State Key Program for Basic Research of China (SKPBRC) under Grant Nos. 2013CB632703 and 2012CB921501, the National Natural Science Foundation of China (NSFC) under Grant Nos. 11104136, 11104135, 11304159, 91221206, and 51271092, the Natural Science Foundation of Zhejiang Province under Grant Nos. LY13A040004 and LY14A040004, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20133223120006, and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under Grant No. NY213023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaojun Tang or Jing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Tang, C., Yan, Z. et al. Graphene-based Superlens for Subwavelength Optical Imaging by Graphene Plasmon Resonances. Plasmonics 11, 515–522 (2016). https://doi.org/10.1007/s11468-015-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0074-4

Keywords

Navigation