Skip to main content
Log in

Surface Plasmon Modes of Sandwich-Like Metal–Dielectric Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We established that metal–dielectric nanostructures (consisting of three stacked monolayers of silver nanoparticles incorporated into polymer cross-linked film) can demonstrate three different surface plasmon collective modes. The modes were detected when the extinction spectra of the nanostructures were studied as a function of the incident angle and polarization of the incident light. Two previously known surface plasmon collective modes, namely T and P, associated with particle dipoles parallel and perpendicular to plane of the layer were identified for the polymer films containing one, two, and three monolayers of the particles. The extinction bands of T and P modes exhibited different intensity and frequency dependences on the angle of incidence. More pronounced angular dependences for P mode band indicated the stronger coupling of dipoles for P mode than for T one. A new N mode was observed for the structures consisting of three nanoparticle layers. This mode originated from surface plasmon coupling between adjacent layers. The additional mode significantly increases amount of information that can be obtained from optical response of the nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klimov VV (2013) Nanoplasmonics. Pan Stanford Publishing, Singapore

    Google Scholar 

  2. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer-Verlag

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  4. Kochuveedu ST, Kim DH (2014) Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6(10):4966–4984

    Article  CAS  Google Scholar 

  5. Yang Z-J, Hao Z-H, Lin H-Q, Wang Q-Q (2014) Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale 6(10):4985–4997

    Article  CAS  Google Scholar 

  6. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    Article  CAS  Google Scholar 

  7. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):538–544

    Article  CAS  Google Scholar 

  8. Haick H (2007) Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D Appl Phys 40(23):7173

    Article  CAS  Google Scholar 

  9. Evans PR, Wurtz GA, Hendren WR, Atkinson R, Dickson W, Zayats AV, Pollard RJ (2007) Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal. Appl Phys Lett 91 (4)

  10. Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101 (10)

  11. Kwon M-K, Kim J-Y, Kim B-H, Park I-K, Cho C-Y, Byeon CC, Park S-J (2008) Surface-plasmon-enhanced light-emitting diodes. Adv Mater 20(7):1253–1257

    Article  CAS  Google Scholar 

  12. Shalaev VM, Cai W, Chettiar UK, Yuan H-K, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356–3358

    Article  Google Scholar 

  13. Kussow A-G, Akyurtlu A, Angkawisittpan N (2008) Optically isotropic negative index of refraction metamaterial. Phys Status Solidi B 245(5):992–997

    Article  CAS  Google Scholar 

  14. Grigorenko AN, Geim AK, Gleeson HF, Zhang Y, Firsov AA, Khrushchev IY, Petrovic J (2005) Nanofabricated media with negative permeability at visible frequencies. Nature 438(7066):335–338

    Article  CAS  Google Scholar 

  15. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  16. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  17. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107(30):7343–7350

    Article  CAS  Google Scholar 

  18. Salerno M, Krenn JR, Hohenau A, Ditlbacher H, Schider G, Leitner A, Aussenegg FR (2005) The optical near-field of gold nanoparticle chains. Opt Commun 248:543–549

    Article  CAS  Google Scholar 

  19. Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5(6):1065–1070

    Article  CAS  Google Scholar 

  20. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342

    Article  CAS  Google Scholar 

  21. Zou S, Schatz GC (2005) Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem Phys Lett 40:62–67

    Article  Google Scholar 

  22. Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng B 149(3):251–258

    Article  CAS  Google Scholar 

  23. Haes AJ, Zou S, Schatz GC, Van Duyne RP (2003) A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(1):109–116

    Article  Google Scholar 

  24. Kravets VV, Yeshchenko OA, Gozhenko VV, Ocola LE, Smith DA, Vedral JV, Pinchuk AO (2012) Electrodynamic coupling in regular arrays of gold nanocylinders. J Phys D Appl Phys 45(4):045102

    Article  Google Scholar 

  25. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141

    Article  CAS  Google Scholar 

  26. Fort E, Ricolleau C, Sau-Pueyo J (2002) Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates. Nano Lett 3(1):65–67

    Article  Google Scholar 

  27. Pinchuk AO (2009) Angle dependent collective surface plasmon resonance in an array of silver nanoparticles. J Phys Chem A 113(16):4430–4436

    Article  CAS  Google Scholar 

  28. Malynych S, Chumanov G (2003) Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J Am Chem Soc 125(10):2896–2898

    Article  CAS  Google Scholar 

  29. Malynych SZ, Dmitruk NL, Moroz IE (2013) Influence of substrate on the optical properties of non-aggregated silver nanoparticles. Eur Phys J Appl Phys 64(2):20402

  30. Zong R-L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X-W, Li L-T, Buddhudu S (2004) Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J Phys Chem B 108(43):16713–16716

    Article  CAS  Google Scholar 

  31. Atkinson R, Hendren WR, Wurtz GA, Dickson W, Zayats AV, Evans P, Pollard RJ (2006) Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys Rev B 73(23):235402

    Article  Google Scholar 

  32. Evans PR, Kullock R, Hendren WR, Atkinson R, Pollard RJ, Eng LM (2008) Optical transmission properties and electric field distribution of interacting 2D silver nanorod arrays. Adv Funct Mater 18(7):1075–1079

    Article  CAS  Google Scholar 

  33. McMillan BG, Berlouis LEA, Cruickshank FR, Brevet PF (2007) Reflectance and electrolyte electroreflectance from gold nanorod arrays embedded in a porous alumina matrix. J Electroanal Chem 599(2):177–182

    Article  CAS  Google Scholar 

  34. Kullock R, Hendren WR, Hille A, Grafström S, Evans PR, Pollard RJ, Atkinson R, Eng LM (2008) Polarization conversion through collective surface plasmons in metallic nanorod arrays. Opt Express 16(26):21671–21681

    Article  CAS  Google Scholar 

  35. Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Schaich WL, Puscasu I, Monacelli B, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68 (15)

  36. Schaich WL, Schider G, Krenn JR, Leitner A, Aussenegg FR, Puscasu I, Monacelli B, Boreman G (2003) Optical resonances in periodic surface arrays of metallic patches. Appl Opt 42(28):5714–5721

    Article  CAS  Google Scholar 

  37. Malynych S, Luzinov I, Chumanov G (2002) Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem B 106(6):1280–1285

    Article  CAS  Google Scholar 

  38. Huang J, Duan Z, Ling HY (2008) Goos-Hänchen-like shifts in atom optics. Phys Rev A 77(6):063608

    Article  Google Scholar 

  39. Lu H, Cao Z, Li H, Shen Q (2004) Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Appl Phys Lett 85(20):4579

    Article  CAS  Google Scholar 

  40. Chen L, Cao ZQ, Ou F, Li HG, Shen QS, Qiao HC (2007) Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Opt Lett 32(11):1432–1434

    Article  Google Scholar 

  41. Tsyalkovsky V, Klep V, Ramaratnam K, Lupitskyy R, Minko S, Luzinov I (2008) Fluorescent reactive core-shell composite nanoparticles with a high surface concentration of epoxy functionalities. Chem Mater 20(1):317–325

    Article  CAS  Google Scholar 

  42. Liu Y, Klep V, Zdyrko B, Luzinov I (2005) Synthesis of high-density grafted polymer layers with thickness and grafting density gradients. Langmuir 21(25):11806–11813

    Article  CAS  Google Scholar 

  43. Iyer KS, Luzinov I (2004) Effect of macromolecular anchoring layer thickness and molecular weight on polymer grafting. Macromolecules 37(25):9538–9545

    Article  CAS  Google Scholar 

  44. Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32(12):859–869

    Article  CAS  Google Scholar 

  45. Burtovyy O, Klep V, Chen HC, Hu RK, Lin CC, Luzinov I (2007) Hydrophobic modification of polymer surfaces via “grafting to” approach. J Macromol Sci B Phys 46(1):137–154

    Article  CAS  Google Scholar 

  46. Hoy O, Zdyrko B, Lupitskyy R, Sheparovych R, Aulich D, Wang JF, Bittrich E, Eichhorn KJ, Uhlmann P, Hinrichs K, Muller M, Stamm M, Minko S, Luzinov I (2010) Synthetic hydrophilic materials with tunable strength and a range of hydrophobic interactions. Adv Funct Mater 20(14):2240–2247

    Article  CAS  Google Scholar 

  47. Ramaratnam K, Tsyalkovsky V, Klep V, Luzinov I (2007) Ultrahydrophobic textile surface via decorating fibers with monolayer of reactive nanoparticles and non-fluorinated polymer. Chem Commun 43:4510–4512

    Article  Google Scholar 

  48. Samadi A, Husson SM, Liu Y, Luzinov I, Kilbey SM (2005) Low-temperature growth of thick polystyrene brushes via ATRP. Macromol Rapid Commun 26(23):1829–1834

    Article  CAS  Google Scholar 

  49. Zdyrko B, Hoy O, Kinnan MK, Chumanov G, Luzinov I (2008) Nano-patterning with polymer brushes via solvent-assisted polymer grafting. Soft Matter 4(11):2213–2219

    Article  CAS  Google Scholar 

  50. Zdyrko B, Kinnan MK, Chumanov G, Luzinov I (2008) Fabrication of optically active flexible polymer films with embedded chain-like arrays of silver nanoparticles. Chem Commun 11:1284–1286

    Article  Google Scholar 

  51. Iyer KS, Zdyrko B, Malynych S, Chumanov G, Luzinov I (2011) Reversible submergence of nanoparticles into ultrathin block copolymer films. Soft Matter 7(6):2538–2542

    Article  CAS  Google Scholar 

  52. Tsyalkovsky V, Burtovyy R, Klep V, Lupitskyy R, Motornov M, Minko S, Luzinov I (2010) Fluorescent nanoparticles stabilized by poly(ethylene glycol) containing shell for pH-triggered tunable aggregation in aqueous environment. Langmuir 26(13):10684–10692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the State Agency on Science, Innovations and Informatization of Ukraine (grant no. M/325-2013), the National Science Foundation (grant nos. CBET-0756457 and DMR-0602528), and the US Department of Energy (grant no. DE-FG02-06ER46342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Yeshchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeshchenko, O., Bondarchuk, I., Malynych, S. et al. Surface Plasmon Modes of Sandwich-Like Metal–Dielectric Nanostructures. Plasmonics 10, 655–665 (2015). https://doi.org/10.1007/s11468-014-9851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9851-8

Keywords

Navigation