Skip to main content
Log in

Aluminum Nanohole Arrays Fabricated on Polycarbonate for Compact Disc-Based Label-Free Optical Biosensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Al nanohole array plasmonic biosensors have been fabricated on polycarbonate (PC) substrates from conventional compact discs (CD). Standard micro and nanofabrication processes have been used and optimized to be PC compatible. The viability of this CD-based plasmonic platform for label-free optical biosensing has been demonstrated through a competitive bioassay for biotin analysis using biotin-functionalized dextran-lipase conjugates immobilized on the transducer surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanious FA, Nguyen B, Wilson WD (2008) Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. In: Methods in cell biology. biophysical tools for biologists. Edit. Correia JJ and Detrich HW, III. Volume 84, Chapter 3, pp 53–77

  2. Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. The Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  3. Lindquist NC, Nagpal P, McPeak KM, Norris DJ, Oh SH (2012) Engineering metallic nanostructures for plasmonics and nanophotonics. Rep Prog Phys 75:036501

    Article  Google Scholar 

  4. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  5. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  CAS  Google Scholar 

  6. Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland DS, Höök F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043–5048

    Article  CAS  Google Scholar 

  7. Yang JC, Ji J, Hogle JM, Larson DN (2009) Multiplexed plasmonic sensing based on small-dimension nanohole arrays. Biosens Bioelectron 24:2334–2338

    Article  CAS  Google Scholar 

  8. Erickson JS, Ligler FS (2008) Analytical chemistry: home diagnostic to music. Nature 456:178–179

    Article  CAS  Google Scholar 

  9. Bañuls MJ, González-Pedro V, Puchades R, Maquieira A (2007) PMMA isocyonate modified digital discs as a support for oligonucleotide-based assays. Bioconjugate Chem 18:1408–1414

    Article  Google Scholar 

  10. Challener WA, Ollmann RR, Kam KK (1999) A surface plasmon resonance gas sensor in a ‘compact disc’ format. Sensors Actuators B 54:254–258

    Article  Google Scholar 

  11. Dou X, Phillips BM, Chung PY, Jiang P (2012) High surface plasmon resonance sensitivity enabled by optical disks. Opt Lett 37:3681–3683

    Article  Google Scholar 

  12. Herranz S, Marciello M, Olea D, Hernández M, Domingo C, Vélez M, Gheber LA, Guisán JM, Moreno-Bondi MC (2013) Dextran-lipase conjugates as tools for low molecular weight ligand immobilization in microarray development. Anal Chem 85:7060–7068

    Article  CAS  Google Scholar 

  13. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77:075401

    Article  Google Scholar 

  14. Canalejas-Tejero V, Herranz S, Bellingham A, Moreno-Bondi MC, Barrios CA (2014) Passivated aluminum nanohole arrays for label-free biosensing applications. ACS Appl Mater Interfaces 6:1005–1010

    Article  CAS  Google Scholar 

  15. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, Freudenthal J, Roitman DB (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103:034301

    Article  Google Scholar 

  16. Chen Q, Martin C, Cumming DRS (2012) Transfer printing of nanoplasmonic devices onto flexible polymer substrates from a rigid stamp. Plasmonics 7:755–761

    Article  CAS  Google Scholar 

  17. Fang Z, Lin C, Ma R, Huang S, Zhu X (2010) Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4:75–82

    Article  CAS  Google Scholar 

  18. Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, de García Abajo FJ (2013) Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7:2388–2395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Projects: TEC2010-10804-E (MICINN, Spain), TEC2012-31145 and CTQ2012-37573-C02-02 (MINECO, Spain), FEDERCTQ2010-15943 (CICYT, Spain) and GVA PROMETEO 2010/008. The Spanish MEC provided MAO with a PhD studies grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Barrios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrios, C.A., Canalejas-Tejero, V., Herranz, S. et al. Aluminum Nanohole Arrays Fabricated on Polycarbonate for Compact Disc-Based Label-Free Optical Biosensing. Plasmonics 9, 645–649 (2014). https://doi.org/10.1007/s11468-014-9676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9676-5

Keywords

Navigation