Skip to main content
Log in

Effective Coupling of Incident Light Through an Air Region into an S-Shape Plasmonic Ag Nanowire Waveguide with Relatively Long Propagation Length

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Coupling of incident light through an air region into an S-shape silver (Ag) plasmonic nanowire waveguide (SSAPNW) is a highly difficult challenge of light guiding on the surface of metal nanowire. In this paper, we numerically analyze the coupling effect of an SSAPNW which is covered by a dielectric medium using a finite element method. The coupling effect can be modulated by adjusting the Ag nanowire diameter and the covering dielectric medium width and wavelength of incident light, and the propagation length of surface plasmon (SP) coupling can be maximized. Simulation results reveal that the field confinement can be significantly improved and the majority of the electric field can be carried on the surface of a bending Ag nanowire. The effect of electric field transport along an SSAPNW due to SP coupling and Fabry-Perot resonance is investigated for different dimensions and lengths. Accordingly, long propagation lengths of about 41.5 μm for 10 × SSAPNW at an incident wavelength of 810 nm and longer propagation length can be achieved if more sections of an SSAPNW are used. Simulation results offer an efficient method for optimizing SP coupling into bending metal nanowire waveguides and promote the realization of highly integrated plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  2. Guo X, Qiu M, Bao JM, Wiley BJ, Yang Q, Zhang XN, Ma YG, Yu HK, Tong LM (2009) Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett 9:4515–4519

    Article  CAS  Google Scholar 

  3. Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–483

    Article  Google Scholar 

  4. Verhagen E, Spasenović M, Polman A, Kuipers L (2009) Nanowire plasmon excitation by adiabatic mode transformation. Phys Rev Lett 102:203904

    Article  Google Scholar 

  5. Anuj D, Michael C, Tuan VD (2012) Bimodal behavior and isobestic transition pathway in surface plasmon resonance sensing. Opt Express 20:23630–23642

    Article  Google Scholar 

  6. Chau YF, Chen MW, Tsai DP (2009) Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod. Appl Opt 48:617–622

    Article  CAS  Google Scholar 

  7. Tong L, Lou J, Mazur E (2004) Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Express 12:1025–1035

    Article  CAS  Google Scholar 

  8. Law M et al (2004) Nanoribbon waveguides for subwavelength photonics integration. Science 305:1269–1273

    Article  CAS  Google Scholar 

  9. Pile DFP, Gramotnev DK (2005) Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Opt Lett 30:1186–1188

    Article  CAS  Google Scholar 

  10. Mason DR, Gramotnev DK, Kim KS (2010) Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides. Opt Express 18:16139–16145

    Article  CAS  Google Scholar 

  11. Chang YJ, Liu YC (2011) Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration. Opt Express 19:3063–3076

    Article  CAS  Google Scholar 

  12. Gramotnev DK, Vernon KC (2007) Adiabatic nano-focusing of plasmons by sharp metallic wedges. Appl Phys B 86:7–17

    Article  CAS  Google Scholar 

  13. Chang DE, Sorensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons. Nat Phys 3:807–812

    Article  CAS  Google Scholar 

  14. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  15. Roma’n-Velazquez CE, Noguez C, Barrera RG (1999) Optical properties of a spheroid–substrate system. Phys Status Solidi A 175:393–397

    Article  Google Scholar 

  16. Liang Y, Peng W, Hu R, Zou H (2013) Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls. Opt Express 21:6139–6152

    Article  CAS  Google Scholar 

  17. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. PRL 95:257403

    Article  Google Scholar 

  18. Quail et al (1983) Long range surface-plasmon modes in silver and aluminum films. Opt Lett 8:377–379

    Article  CAS  Google Scholar 

  19. Nikolajsen T, Leosson K, Salakhutdinov I, Bozhevolnyi SI (2003) Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths. Appl Phys Lett 82:668–670

    Article  CAS  Google Scholar 

  20. Economon EN (1969) Surface plasmons in thin films. Phys Rev 182:539–554

    Article  Google Scholar 

  21. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Science Council of the Republic of China (Taiwan) under contract number NSC 102-2112-M-231-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, CC., Tsai, YT., Yang, W. et al. Effective Coupling of Incident Light Through an Air Region into an S-Shape Plasmonic Ag Nanowire Waveguide with Relatively Long Propagation Length. Plasmonics 9, 573–579 (2014). https://doi.org/10.1007/s11468-014-9668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9668-5

Keywords

Navigation