Skip to main content

Advertisement

Log in

Surface Plasmon Polariton Band Gap-Enabled Plasmonic Mach–Zehnder Interferometer: Design, Analysis, and Application

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a design for surface plasmon polariton band gap (SPPBG)-enabled plasmonic Mach–Zehnder interferometer (PMZI) comprising of array of silver nanorods embedded upright into silicon on insulator (SOI) substrate and analyze its potential in sensing, intended for cancer therapy. Periodic arrangement of nanorods embedded into SOI substrate grants strong spatial confinement and assist waveguidance to the propagating plasmon mode due to the SPPBG effect. This arrayed system triggers local field enhancement promoting sensing proficiency of the device and is assessed in terms of wavelength and phase shift. Proposed design of SPPBG-enabled PMZI sensor is successfully employed for detection and classification of various cancerous cells. The structural parameters of PMZI are optimized in compliance with the plasmonic band gap in the range of 400–800 nm yielding exceptionally high sensitivity at input wavelength of 633 nm. Volumetric analysis of the analyte reveals that very small analyte volume of the order of 10−15 cc is sufficient to yield significant phase shift. Phase shift obtained for the breast adenocarcinoma and blood cancer cell lines are 1.2357radian and 0.3351radian, respectively, which read very high value of phase shifts to identify extremely small changes in refractive index of the analyte. Figure of merit calculated thereby expose impressive device performance outdoing preceding plasmonic sensors leading to validation of proposed ultra-compact-sensitive PMZI design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bozhevolnyi SI, Boltasseva A, Sondergaard T, Nikolajsen T, Leosson K (2005) Opt Commun 250:328

    Article  CAS  Google Scholar 

  2. Kim DS, Hohng SC, Malyarchuk V, Yoon YC, Ahn YH, Yee KJ, Park JW, Kim J, Park Q, Lienau C (2003) PRL 91:143901

    Article  CAS  Google Scholar 

  3. Bozhevolnyi SI, Erland J, Leosson K, Skovgaard PMW, Hvam JM (2001) PRL 86:3008

    Article  CAS  Google Scholar 

  4. Mekis A, Chen JC, Kurland I, Fan S, Villeneuve PR, Joannopoulos JD (1996) PRL 77:3787

    Article  CAS  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824

    Article  CAS  Google Scholar 

  6. Wu SY, Ho HP, Law WC, Lin C (2004) Opt Lett 29:2378

    Article  CAS  Google Scholar 

  7. Gao Y, Gan Q, Xin Z, Cheng X, Bartoli FJ (2011) ACS Nano 5:9836

    Article  CAS  Google Scholar 

  8. Drezet A, Hohenau A, Stepanov AL, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2006) Plasmonics 1:141

    Article  CAS  Google Scholar 

  9. Thomas R, Ikonic Z, Kelsall RK (2012) PNFA 10:183

    Google Scholar 

  10. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Nature 440:508

    Article  CAS  Google Scholar 

  11. Wahsheh RA, Lu Z, Abushagur MAG (2009) Opt Commun 282:4622

    Article  CAS  Google Scholar 

  12. Pu M, Yao N, Hu C, Xin X, Zhao Z, Wang C, Luo X (2010) Opt Express 18:21030

    Article  CAS  Google Scholar 

  13. Guo X, Qiu M, Bao J, Wiley BJ, Yang Q, Zhang X, Ma Y, Yu H, Tong L (2009) Nano Lett 9:4515

    Article  CAS  Google Scholar 

  14. Xia Y, Halas NJ (2005) MRS Bull 30:338

    Article  CAS  Google Scholar 

  15. Lal S, Link S, Halas NJ (2007) Nat Photonics 1:641

    Article  CAS  Google Scholar 

  16. Choi WJ, Jeon DI, Ahn SG, Yoon JH, Kim S, Lee BH (2011) Opt Express 18:23285

    Article  Google Scholar 

  17. Zysk AM, Chaney EJ, Boppart SA (2006) Phys Med Biol 51:2165

    Article  Google Scholar 

  18. Liang XJ, Liu AQ, Lim CS, Ayi TC, Yap PH (2007) Sens Act A 133:349

    Article  CAS  Google Scholar 

  19. Kosmeier S, Kemper B, Langehanenberg P, Bredebusch I, Schnekenburger J, Bauwens A, Bally GV (2008) Proc SPIE 6991:6999110

    Google Scholar 

  20. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas NJ, West J, Drezek R (2004) Tech Cancer Res Treat 3:33

    Article  CAS  Google Scholar 

  21. Hagness SC, Taflove A, Bridges JE (1999) IEEE Trans Ant Prop 47:783

    Article  Google Scholar 

  22. Zhang G, Long M, Wu ZZ, Yu WQ (2002) World J Gastroenterol 8:243

    Google Scholar 

  23. Suresh S (2007) Acta Biomater 3:413

    Article  Google Scholar 

  24. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Eur Biophys J 28:312

    Article  CAS  Google Scholar 

  25. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Biophys J 88:3689

    Article  CAS  Google Scholar 

  26. Katira P, Zaman MH, Bonnecaze RT (2012) Phys Rev Lett 108:028103

    Article  Google Scholar 

  27. Reticker-Flynn NE, Malta DFB, Winslow MM, Lamar JM, Xu MJ, Underhill GH, Hynes RO, Jacks TE, Bhatia SN (2012) Nat Commun 3:1122

    Article  Google Scholar 

  28. Lin AWH, Lewinski LA, West JL, Halas NJ, Drezek RA (2005) J Biomed Opt 10:064035

    Article  Google Scholar 

  29. El-Sayed IH, Huang X, El-Sayed MA (2005) Nano Lett 5:829

    Article  CAS  Google Scholar 

  30. Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) J Appl Phys 102:064701

    Article  Google Scholar 

  31. Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Nano Lett 9:2825

    Article  CAS  Google Scholar 

  32. Skrabalak SE, Au L, Lu X, Li X, Xia Y (2007) Nanomedicine 2:657

    Article  CAS  Google Scholar 

  33. Ladd J, Lu H, Taylor AD, Goodell V, Disis ML, Jiang S (2009) Colloids Surf B: Biointerfaces 70:1

    Article  CAS  Google Scholar 

  34. Backman V, Wallace MB, Perelman LT, Arendt JT, Gurjar R, Müller MG, Zhang QZonios G, Kline E, McGillican T, Shapshay S, Valdez T, Badizadegan K, Krawford JM, Fitzmaurice M, Kabani S, Levin HS, Seiler M, Dasari RR, Itzkan I, Dam JV, Feld MS (2000) Nature 406:35

    Article  CAS  Google Scholar 

  35. Barer R (1957) J Opt Soc Am 47:545

    Article  CAS  Google Scholar 

  36. Song WZ, Zhang XM, Liu AQ, Lim CS, Yap PH, Hosseini HMM (2006) Appl Phys Lett 89:203901

    Article  Google Scholar 

  37. Lue N, Popescu G, Ikeda T, Dasari RR, Badizadegan K, Feld MS (2006) Opt Lett 31:2759

    Article  Google Scholar 

  38. Chin LK, Liu AQ, Lim CS, Zhang XM, Ng JH, Hao JZ, Takahashi S (2007) Appl Phys Lett 91:243901

    Article  Google Scholar 

  39. Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Appl Phys Lett 86:151122

    Article  Google Scholar 

  40. Homola J (2003) Anal Bioanal Chem 377:528

    Article  CAS  Google Scholar 

  41. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RPV (2008) Nat Mater 7:442

    Article  CAS  Google Scholar 

  42. Dillu V, Sinha RK (2013) Indian Patent Application No. 1168/DEL/2013 CBR No. 3985

  43. Gan Q, Gao Y, Bartoli FJ (2009) Opt Express 17:20747

    Article  CAS  Google Scholar 

  44. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  45. Dillu V, Shruti, Srivastava T, Sinha RK (2013) Physica E 48:75

    Article  CAS  Google Scholar 

  46. Rajput M, Sinha RK (2010) Appl Phys B 98:99

    Article  Google Scholar 

  47. Mayer KM, Hafner JH (2011) Chem Rev 111:3828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the initiative and support towards establishment of “TIFAC-Center of Relevance and Excellence in Fiber Optics and Optical Communication at Delhi College of Engineering now Delhi Technological University, Delhi, through Mission Reach Program of Technology Vision 2020, Government of India. Also, we would like to extend our acknowledgement to Dr Anurag Mehta and Mr Sujeet Nath Sinha of Rajiv Gandhi Cancer Institute and Research Center for allowing us to use their resources and carry out the research work in regard of cancer cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dillu, V., Sinha, R.K. Surface Plasmon Polariton Band Gap-Enabled Plasmonic Mach–Zehnder Interferometer: Design, Analysis, and Application. Plasmonics 9, 527–535 (2014). https://doi.org/10.1007/s11468-013-9652-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9652-5

Keywords

Navigation