Skip to main content
Log in

Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance and tailor photoelectron emission in Schottky barrier photodetectors and solar cells. We show that the interaction between narrow-band lattice resonances (the Rayleigh anomaly) and broader-band individual-particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement. In turn, this causes a significant increase of the photocurrent compared to the case when only individual-particle excitations are present. The results can be used to design new photodetectors with highly selective, tunable spectral response, which are able to detect photons with the energy below the semiconductor bandgap. The findings can also be used to develop solar cells with increased efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  2. Knight MW, Sobhani A, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702–704

    Article  CAS  Google Scholar 

  3. Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6(1):155–161

    Article  CAS  Google Scholar 

  4. Knight MW, Wang Y, Urban AS, Sobhani A, Zheng BY, Nordlander P, Halas NJ (2013) Embedding plasmonic nanostructure diodes enhances hot electron emission. Nano Lett 13:1687–1692

    CAS  Google Scholar 

  5. Protsenko IE, Uskov AV (2012) Photoemission from metal nanoparticles. Phys Usp 55(5):508–518

    Article  CAS  Google Scholar 

  6. Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ (2013) Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat Commun 4(3):1643

    Article  Google Scholar 

  7. Moulin EA, Paetzold UW, Pieters BE, Reetz W, Carius R (2013) Plasmon-induced photoexcitation of “hot” electrons and “hot” holes in amorphous silicon photosensitive devices containing silver nanoparticles. J Appl Phys 113(14):144501

    Article  Google Scholar 

  8. Novitsky A, Uskov AV, Gritti C, Protsenko IE, Kardynał BE, Lavrinenko AV (2012) Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Prog Photovolt Res Appl. doi:10.1002/pip.2278

    Google Scholar 

  9. White TP, Catchpole KR (2012) Plasmon-enhanced internal photoemission for photovoltaics: theoretical efficiency limits. Appl Phys Lett 101:073905

    Article  Google Scholar 

  10. Govorov AO, Zhang H, Gun'Ko YK (2013) Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J Phys Chem C 117(32):16616–16631

    Article  CAS  Google Scholar 

  11. Zou S, Schatz GC (2006) Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17:2813–2820

    Article  CAS  Google Scholar 

  12. Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 10:143902

    Article  Google Scholar 

  13. Auguié B, Bendaña XM, Barnes WL, García de Abajo FJ (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15):155447

    Article  Google Scholar 

  14. Evlyukhin AB, Reinhardt C, Zywietz U, Chichkov B (2012) Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys Rev B 85(24):245411

    Article  Google Scholar 

  15. Nikitin AG, Kabashin AV, Dallaporta H (2012) Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt Express 20(25):27941–27952

    Article  CAS  Google Scholar 

  16. Sun C, Gao H, Shi R, Li C, Du C (2013) Design method for light absorption enhancement in ultra-thin film organic solar cells with the metallic nanoparticles. Plasmonics 8(2):645–650

    Article  CAS  Google Scholar 

  17. Hessel A, Oliner AA (1965) A new theory of Wood's anomalies on optical gratings. Appl Opt 4(10):1275–1297

    Article  Google Scholar 

  18. Kravets VG, Schedin F, Grigorenko AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101(8):087403

    Article  CAS  Google Scholar 

  19. Fedorenko L, Mamykin S, Lytvyn O, Burlachenko Y, Snopok B (2011) Nanostructuring of continuous gold film by laser radiation under surface plasmon polariton resonance conditions. Plasmonics 6(2):363–371

    Article  CAS  Google Scholar 

  20. Zhou W, Odom T (2011) Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat Nanotechnol 6:423–427

    Article  CAS  Google Scholar 

  21. Vecchi G, Giannini V, Gomez Rivas J (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80:201401(R)

    Google Scholar 

  22. Offermans P, Schaafsma MC, Rodriguez SRK, Zhang Y, Crego-Calama M, Brongersma SH, Gómez Rivas J (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6):5151–5157

    Article  CAS  Google Scholar 

  23. Rodriguez SRK, Lozano G, Verschuuren MA, Gomes R, Lambert K, De Geyter B, Hassinen A, Van Thourhout D, Hens Z, Gómez Rivas J (2012) Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light. Appl Phys Lett 100(11):111103

    Article  Google Scholar 

  24. Zhukovsky SV, Babicheva VE, Uskov AV, Protsenko IE, and Lavrinenko AV (2013) Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects. http://arxiv.org/abs/1308.3345. Accessed 1 Sept 2013

  25. Ordal A, Bell RJ, Alexander RA Jr, Long LL, Querry MR (1985) Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl Opt 24(24):4493–4499

    Article  CAS  Google Scholar 

  26. CST Microwave Studio, http://www.cst.com/

  27. Tamm I, Schubin S (1931) Zur Theorie des Photoeffektes an Metallen. Z Phys 68(1–2):97–113

    Article  CAS  Google Scholar 

  28. Brodsky AM, Gurevich YY (1973) Theory of electron emission from metals. Nauka, Moscow

    Google Scholar 

  29. Brodsky AM, Gurevich YY (1968) Theory of external photoeffect from the surface of a metal. Sov Phys JETP 27:114–121

    Google Scholar 

  30. Scales C, Berini P (2010) Thin-film Schottky barrier photodetector models. IEEE J Quant Electron 46(5):633–643

    Article  CAS  Google Scholar 

  31. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4(6):795–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.V.Z. acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme FP7-PEOPLE-2011-IIF under REA grant agreement No. 302009 (Project HyPHONE). I.E.P. and A.V.U. acknowledge support from the Russian Foundation for Basic Research (Project No. 14-02-00125) and the Russian MSE State Contract N14.527.11.0002 and from the CASE project (Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Zhukovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukovsky, S.V., Babicheva, V.E., Uskov, A.V. et al. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells. Plasmonics 9, 283–289 (2014). https://doi.org/10.1007/s11468-013-9621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9621-z

Keywords

Navigation