Skip to main content
Log in

Multiple-Wavelength Focusing and Demultiplexing Plasmonic Lens Based on Asymmetric Nanoslit Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays is designed. The nanoslit arrays are perforated in a gold film and act as metal–insulator–metal plasmonic waveguides. By manipulating the widths of the slit arrays, the plasmonic lens can concentrate two incident plane wave beams to two separated focal points corresponding to their wavelengths. The full wave simulation is performed to verify the designed lens. This work provides a way to design more compact and integrated wavelength-division multiplexing plasmonic devices for nanophotonic communication and spectral imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homola J, Vaisocherov H, Dostlek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37:26–36

    Article  CAS  Google Scholar 

  2. Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Xie Z, Yu W, Wang T, Zhang H, Fu Y, Liu H, Li F, Lu Z, Sun Q (2011) Plasmonic nanolithography: a review. Plasmonics 6:565–580

    Article  Google Scholar 

  4. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  5. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  6. Cai W, Shin W, Fan S, Brongersma ML (2010) Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater 22:5120–5124

    Article  CAS  Google Scholar 

  7. Veronis G, Fan S (2005) Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  8. López-Tejeira F, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, González MU, Weeber JC, Dereux A (2007) Efficient unidirectional nanoslit couplers for surface plasmons. Nat Phys 3:324–328

    Article  Google Scholar 

  9. Lee K, Park Q-H (2005) Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys Rev Lett 95:103902

    Article  CAS  Google Scholar 

  10. Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13:10795–10800

    Article  Google Scholar 

  11. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  12. Shi H, Wang C, Du C, Luo X, Dong X, Gao H (2005) Beam manipulating by metallic nano-slits with variant widths. Opt Express 13:6815

    Article  Google Scholar 

  13. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9:235–238

    Article  CAS  Google Scholar 

  14. Laux E, Genet C, Skauli T, Ebbesen TW (2008) Plasmonic photon sorters for spectral and polarimetric imaging. Nat Photonics 2:161–164

    Article  CAS  Google Scholar 

  15. Chremmos I (2009) Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. J Opt Soc Am A 26:2623–2633

    Article  Google Scholar 

  16. Chremmos I (2010) Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities. J Opt Soc Am A 27:85–94

    Article  Google Scholar 

  17. Little BE, Chu ST, Absil PP, Hryniewicz JV, Johnson FG, Seiferth F, Gill D, Van V, King O, Trakalo M (2004) Very high-order microring resonator filters for WDM applications. IEEE Photonic Tech Lett 16:2263–2265

    Article  Google Scholar 

  18. Liu J, Fang G, Zhao H, Zhang Y, Liu S (2010) Plasmon flow control at gap waveguide junctions using square ring resonators. J Phys D: Appl Phys 43:055103

    Article  Google Scholar 

  19. Wang G, Lu H, Liu X, Mao D, Duan L (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19:3513–3518

    Article  CAS  Google Scholar 

  20. Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal–dielectric–metal plasmonic nano-capillary resonators. Opt Express 18:11111–11116

    Article  Google Scholar 

  21. Hu F, Yi H, Zhou Z (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36:1500–1502

    Article  Google Scholar 

  22. Tanemura T, Balram KC, Ly-Gagnon D-S, Wahl P, White JS, Brongersma ML, Miller DaB (2011) Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. Nano Lett 11:2693–2698

    Article  CAS  Google Scholar 

  23. Li L, Li T, Wang S, Zhu S, Zhang X (2011) Broad band focusing and demultiplexing of in-plane propagating surface plasmons. Nano Lett 11:4357–4361

    Article  CAS  Google Scholar 

  24. Zhao Y, Lin S, Nawaz A, Kiraly B (2010) Beam bending via plasmonic lenses. Opt Express 18:508–511

    Google Scholar 

  25. Chen Q (2010) Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film. Opt Express 18:14788–14793

    Article  CAS  Google Scholar 

  26. Verslegers L, Catrysse PB, Yu Z, Fan S (2009) Planar metallic nanoscale slit lenses for angle compensation. Appl Phys Lett 95:071112

    Article  Google Scholar 

  27. Ishii S, Kildishev AV, Shalaev VM, Chen K-P, Drachev VP (2011) Metal nanoslit lenses with polarization-selective design. Opt Lett 36:451

    Article  CAS  Google Scholar 

  28. Zhu Q, Ye J, Wang D, Gu B, Zhang Y (2011) Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm. Opt Express 19:48–51

    Google Scholar 

  29. Gao Y, Liu J, Zhang X, Wang Y, Song Y, Liu S, Zhang Y (2012) Analysis of focal-shift effect in planar metallic nanoslit lenses. Opt Express 20:1320–1329

    Article  Google Scholar 

  30. Yu Y, Zappe H (2012) Theory and implementation of focal shift of plasmonic lenses. Opt Lett 37:1592

    Article  Google Scholar 

  31. Yu Y (2011) Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design. Opt Express 19:9434–9444

    Article  Google Scholar 

  32. Goh X, Lin L (2010) Planar focusing elements using spatially varying near-resonant aperture arrays. Opt Express 18:11683–11688

    Article  CAS  Google Scholar 

  33. Chen Q (2011) A novel plasmonic zone plate lens based on nano-slits with refractive index modulation. Plasmonics 6:381–385

    Article  Google Scholar 

  34. Gordon R, Brolo A (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938

    Article  Google Scholar 

  35. Zhu Q, Wang D, Zheng X, Zhang Y (2011) Optical lens design based on metallic nanoslits with variant widths. Appl Opt 50:1879–1883

    Article  Google Scholar 

  36. Palik ED (1998) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program of China (no. 2013CBA01702), the National Natural Science Foundation of China (nos. 11204188, 61205097, 91233202, and 11174211), the National High Technology Research and Development Program of China (no. 2012AA101608-6), the Beijing Natural Science Foundation (no. KZ201110028035), and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Wu, X. & Zhang, Y. Multiple-Wavelength Focusing and Demultiplexing Plasmonic Lens Based on Asymmetric Nanoslit Arrays. Plasmonics 8, 1535–1541 (2013). https://doi.org/10.1007/s11468-013-9569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9569-z

Keywords

Navigation