Skip to main content
Log in

Influence of Structural and Electronic Properties on the Collective Excitations of Ag/Cu(111)

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Herein, we report on the interplay between structural and electronic properties in the dynamical screening processes and the excitation of collective modes in Ag/Cu(111). For the (9 × 9)-Ag/Cu(111) structure, the excitation of the two-dimensional plasmon, observed in Ag/Si(111), is forbidden by both the high corrugation of the Ag layer and the presence of the underlying metal substrate. The increase of the sp density of states at the Fermi energy induces the appearance of a broad peak at 7–8 eV assigned to a free-electron collective excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yuan Z, Jiang Y, Gao Y, Käll M, Gao S (2011) Symmetry-dependent screening of surface plasmons in ultrathin supported films: the case of Al/Si(111). Phys Rev B 83(16):165452

    Article  Google Scholar 

  2. Gao Y, Yuan Z, Gao S (2011) Semiclassical approach to plasmon–electron coupling and Landau damping of surface plasmons. J Chem Phys 134(13):134702

    Article  Google Scholar 

  3. Qin H, Gao Y, Teng J, Xu H, Wu K, Gao S (2010) Laterally tunable plasmon resonance in confined biatomic-layer Ag nanodisks. Nano Lett 10(8):2961–2964

    Article  CAS  Google Scholar 

  4. Yuan Z, Gao S (2009) Linear response approach to collective electronic excitations of solids and surfaces. Comput Phys Commun 180(3):466–473

    Article  CAS  Google Scholar 

  5. Yuan Z, Gao S (2008) Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surf Sci 602(2):460–464

    Article  CAS  Google Scholar 

  6. Yuan Z, Gao S (2006) Linear-response study of plasmon excitation in metallic thin films: Layer-dependent hybridization and dispersion. Phys Rev B 73(15):155411

    Article  Google Scholar 

  7. Yu YH, Tang Z, Jiang Y, Wu KH, Wang EG (2006) Thickness dependence of the surface plasmon dispersion in ultrathin aluminum films on silicon. Surf Sci 600(22):4966–4971

    Article  CAS  Google Scholar 

  8. Yu YH, Jiang Y, Tang Z, Guo QL, Jia JF, Xue QK, Wu KH, Wang EG (2005) Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Phys Rev B 72(20):205405

    Article  Google Scholar 

  9. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): dependence of water reactivity as a function of Na coverage. J Chem Phys 126(24):244712

    Article  CAS  Google Scholar 

  10. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2009) Collective excitations in nanoscale thin alkali films: Na/Cu(111). J Nanosci Nanotechnol 9(6):3932–3937

    Article  CAS  Google Scholar 

  11. Politano A, Formoso V, Chiarello G (2008) Dispersion and damping of gold surface plasmon. Plasmonics 3(4):165–170

    Article  CAS  Google Scholar 

  12. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97(20):206806

    Article  Google Scholar 

  13. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Article  CAS  Google Scholar 

  14. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002

    Article  Google Scholar 

  15. Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308(5728):1607–1609

    Article  Google Scholar 

  16. Sánchez EJ, Novotný L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82(20):4014–4017

    Article  Google Scholar 

  17. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  18. Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106(33):8096–8099

    Article  CAS  Google Scholar 

  19. Milun M, Pervan P, Woodruff DP (2002) Quantum well structures in thin metal films: simple model physics in reality? Rep Prog Phys 65(2):99–141

    Article  CAS  Google Scholar 

  20. Zhang Z, Zhang Y, Fu Q, Zhang H, Yao Y, Ma T, Tan D, Xue Q, Bao X (2008) Modulation of surface reactivity via electron confinement in metal quantum well films: O2 adsorption on Pb/Si(111). J Chem Phys 129(1):014704

    Article  Google Scholar 

  21. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Purely quadratic dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement. Phys Status Solidi RRL 2(2):86–88

    Article  CAS  Google Scholar 

  22. Politano A, Chiarello G (2010) Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement. Chem Phys Lett 494:84–87

    Article  CAS  Google Scholar 

  23. Politano A, Formoso V, Chiarello G (2009) Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattices Microstruct 46(1–2):137–140

    Article  CAS  Google Scholar 

  24. Chis V, Benedek G (2011) Phonon-induced surface charge density oscillations in quantum wells: a first-principles study of the (2 × 2)-k overlayer on Be(0001). J Phys Chem A 115(25):7242–7248

    Article  CAS  Google Scholar 

  25. Kralj M (2005) Hybridization schemes for Ag films on V(100). Surf Sci 599(1–3):150–159

    Article  CAS  Google Scholar 

  26. Mathias S, Eremeev SV, Chulkov EV, Aeschlimann M, Bauer M (2009) Quantum oscillations in coupled two-dimensional electron systems. Phys Rev Lett 103(2):026802

    Article  CAS  Google Scholar 

  27. Politano A, Formoso V, Chiarello G (2008) Alkali adsorption on Ni(111) and their coadsorption with CO and O. Appl Surf Sci 254(21):6854–6859

    Article  CAS  Google Scholar 

  28. Politano A, Formoso V, Chiarello G (2008) Mechanisms leading to alkali oxidation on metal surfaces. J Phys Chem C 112(46):17772–17774

    Article  CAS  Google Scholar 

  29. Politano A, Formoso V, Chiarello G (2009) Damping of the surface plasmon in clean and K-modified Ag thin films. J Electron Spectrosc Relat Phenom 173(1):12–17

    Article  CAS  Google Scholar 

  30. Politano A, Chiarello G (2009) Collective electronic excitations in systems exhibiting quantum well states. Surf Rev Lett 16(2):171–190

    Article  CAS  Google Scholar 

  31. Politano A, Chiarello G (2009) Tuning the lifetime of the surface plasmon upon sputtering. Phys Status Solidi RRL 3(5):136–138

    Article  CAS  Google Scholar 

  32. Politano A, Chiarello G (2010) Sputtering-induced modification of the electronic properties of Ag/Cu(111). J Phys D: Appl Phys 43(8):085302

    Article  Google Scholar 

  33. Politano A, Formoso V, Chiarello G (2009) Annealing effects on the plasmonic excitations of metal/metal interfaces. Appl Surf Sci 255(11):6038–6042

    Article  CAS  Google Scholar 

  34. Politano A, Formoso V, Chiarello G (2009) Electronic properties of metallic bilayers deposited on Cu(111): a comparative study. Surf Sci 603(6):933–937

    Article  CAS  Google Scholar 

  35. Politano A, Formoso V, Chiarello G (2009) Interference effects in the excitation of collective electronic modes in nanoscale thin Ag films. Superlattices Microstruct 46(1–2):166–170

    Article  CAS  Google Scholar 

  36. Politano A, Formoso V, Colavita E, Chiarello G (2009) Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111). Phys Rev B 79(4):045426

    Article  Google Scholar 

  37. Butun B, Cesario J, Enoch S, Quidant R, Ozbay E (2007) InGaN green light emitting diodes with deposited nanoparticles. Phot Nano Fund Appl 5(2–3):86–90

    Article  Google Scholar 

  38. Rocca M (1995) Low-Energy EELS investigation of surface electronic excitations on metals. Surf Sci Rep 22(1–2):1–71

    Article  CAS  Google Scholar 

  39. Liebsch A (1997) Electronic excitations at metal surfaces. Plenum, New York

    Google Scholar 

  40. Silkin VM, Chulkov EV, Echenique PM (2004) Band structure versus dynamical exchange-correlation effects in surface plasmon energy and damping: a first-principles calculation. Phys Rev Lett 93(17):176801

    Article  CAS  Google Scholar 

  41. Bendounan A, Cercellier H, Fagot-Revurat Y, Kierren B, Yurov VY, Malterre D (2003) Modification of Shockley states induced by surface reconstruction in epitaxial Ag films on Cu(111). Phys Rev B 67(16):165412

    Article  Google Scholar 

  42. Bendounan A, Fagot Revurat Y, Kierren B, Bertran F, Yurov VY, Malterre D (2002) Surface state in epitaxial Ag ultrathin films on Cu(111). Surf Sci 496(1–2):L43–L49

    Article  CAS  Google Scholar 

  43. Bendounan A, Forster F, Ziroff J, Schmitt F, Reinert F (2005) Influence of the reconstruction in Ag/Cu (111) on the surface electronic structure: quantitative analysis of the induced band gap. Phys Rev B 72(7):075407

    Article  Google Scholar 

  44. Mueller MA, Miller T, Chiang TC (1990) Determination of the bulk band structure of Ag in Ag/Cu(111) quantum-well systems. Phys Rev B 41(8):5214

    Article  CAS  Google Scholar 

  45. Mathias S, Wessendorf M, Passlack S, Aeschlimann M, Bauer M (2006) Morphological modifications of Ag/Cu(111) probed by photoemission spectroscopy of quantum well states and the Shockley surface state. Appl Phys A 82(3):439–445

    Article  CAS  Google Scholar 

  46. Mathias S, Wiesenmayer M, Aeschlimann M, Bauer M (2006) Quantum-well wave-function localization and the electron-phonon interaction in thin Ag nanofilms. Phys Rev Lett 97(23):236809

    Article  CAS  Google Scholar 

  47. Meunier I, Tréglia G, Gay J-M, Aufray B, Legrand B (1999) Ag/Cu(111) structure revisited through an extended mechanism for stress relaxation. Phys Rev B 59(16):10910–10917

    Article  CAS  Google Scholar 

  48. Mueller MA, Samsavar A, Miller T, Chiang TC (1989) Probing interfacial properties with Bloch electrons: Ag on Cu(111). Phys Rev B 40(8):5845–5848

    Article  CAS  Google Scholar 

  49. Wessendorf M, Wiemann C, Bauer M, Aeschlimann M, Schneider MA, Brune H, Kern K (2004) Electronic surface structure of n-ML Ag/Cu(111) and Cs/n-ML Ag/Cu(111) as investigated by 2PPE and STS. Appl Phys A 78(2):183–188

    Article  CAS  Google Scholar 

  50. Caputi LS, Chiarello G, Papagno L (1985) Carbonaceous layers on Ni (110) and (100) studied by AES and EELS. Surf Sci 162(1–3):259–263

    Article  CAS  Google Scholar 

  51. De Crescenzi M, Colavita E, Papagno L, Chiarello G, Scarmozzino R, Caputi LS, Rosei R (1983) Electronic properties of Fe80B20 alloys: ordering and disordering effects. J Phys F Met Phys 13(4):895–907

    Article  Google Scholar 

  52. Politano A, Marino AR, Formoso V, Chiarello G (2011) Hydrogen bonding at the water/quasi-freestanding graphene interface. Carbon. doi:10.1016/j.carbon.2011.07.034; http://www.sciencedirect.com/science/article/pii/S0008622311006014

  53. Politano A, Formoso V, Agostino RG, Colavita E, Chiarello G (2007) Influence of CO adsorption on the alkali-substrate bond studied by high-resolution electron energy loss spectroscopy. Phys Rev B 76:233403

    Article  Google Scholar 

  54. Politano A, Chiarello G (2011) Vibrational investigation of catalyst surfaces: change of the adsorption site of CO molecules upon coadsorption. J Phys Chem C 115(28):13541–13553

    Article  CAS  Google Scholar 

  55. Chiarello G, Robba D, De Michele G, Parmigiani F (1993) An X-ray photoelectron-spectroscopy study of the vanadia titania catalysts. Appl Surf Sci 64(2):91–96

    Article  CAS  Google Scholar 

  56. Ciambelli P, Bagnasco G, Lisi L, Turco M, Chiarello G, Musci M, Notaro M, Robba D, Ghetti P (1992) Vanadium-oxide catalysts supported on laser-synthesized titania powders—characterization and catalytic activity in the selective reduction of nitric-oxide. Appl Catal B Environ 1(2):61–77

    Article  CAS  Google Scholar 

  57. Chiarello G, Barberi R, Amoddeo A, Caputi LS, Colavita E (1996) XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface. Appl Surf Sci 99(1):15–19

    Article  CAS  Google Scholar 

  58. Robba D, Ori DM, Sangalli P, Chiarello G, Depero LE, Parmigiani F (1997) A photoelectron spectroscopy study of sub-monolayer V/TiO2(001) interfaces annealed from 300 up to 623 K. Surf Sci 380(2–3):311–323

    Article  CAS  Google Scholar 

  59. Chiarello G, Andzelm J, Fournier R, Russo N, Salahub DR (1988) Surface extended energy loss fine structure and local spin density investigation of carbidic carbon on the Ni(100) surface. Surf Sci 202(3):L621–L626

    Article  CAS  Google Scholar 

  60. Chiarello G, Formoso V, Caputi LS, Colavita E (1987) Extended fine structures in autoionization emission spectra of bulk chromium. Phys Rev B 35(10):5311–5314

    Article  CAS  Google Scholar 

  61. Politano A, Agostino RG, Formoso V, Chiarello G (2008) Short-range interactions in Na coadsorption with CO and O on Ni(111). ChemPhysChem 9(8):1189–1194

    Article  CAS  Google Scholar 

  62. Politano A, Chiarello G (2010) Low-energy bulk plasmon of nickel. Solid State Sci 12(12):2096–2099

    Article  CAS  Google Scholar 

  63. Schiller F, Cordón J, Vyalikh D, Rubio A, Ortega JE (2005) Fermi gap stabilization of an incommensurate two-dimensional superstructure. Phys Rev Lett 94(1):016103

    Article  CAS  Google Scholar 

  64. Schiller F, Cordon J, Vyalikh D, Rubio A, Ortega JE (2006) Schiller et al. reply. Phys Rev Lett 96(2):029702

    Article  Google Scholar 

  65. Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L (2000) Surface-plasmon dispersion and multipole surface plasmons in Al(111). Phys Rev B 62(19):12676–12679

    Article  CAS  Google Scholar 

  66. Politano A, Chiarello G, Formoso V, Agostino RG, Colavita E (2006) Plasmon of Shockley surface states in Cu(111): a high-resolution electron energy loss spectroscopy study. Phys Rev B 74(8):081401

    Article  Google Scholar 

  67. Politano A, Formoso V, Chiarello G (2008) Temperature effects on alkali-promoted CO dissociation on Ni(111). Surf Sci 602(12):2096–2100

    Article  CAS  Google Scholar 

  68. Politano A, Chiarello G (2011) Carbon monoxide interaction with oxygenated nickel single-crystal surfaces studied by vibrational spectroscopy. Vib Spectrosc 55:295–299

    Article  CAS  Google Scholar 

  69. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705

    Article  CAS  Google Scholar 

  70. Nagao T, Hildebrandt T, Henzler M, Hasegawa S (2001) Two-dimensional plasmon in a surface-state band. Surf Sci 493(1–3):680–686

    Article  CAS  Google Scholar 

  71. Nagao T, Hildebrandt T, Henzler M, Hasegawa S (2001) Dispersion and damping of a two-dimensional plasmon in a metallic surface-state band. Phys Rev Lett 86(25):5747–5750

    Article  CAS  Google Scholar 

  72. Liu Y, Willis RF, Emtsev KV, Seyller T (2008) Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys Rev B 78(20):201403

    Article  Google Scholar 

  73. Inaoka T (2003) Characteristics of low-dimensional plasmons in a metallic strip monolayer on a semiconductor surface. Phys Rev B 68(4):041301(R)

    Article  Google Scholar 

  74. Inaoka T (2005) Predicted energy-loss spectrum of low-dimensional plasmons in a metallic strip monolayer on a semiconductor surface. Phys Rev B 71(11):115305

    Article  Google Scholar 

  75. Inaoka T, Nagao T, Hasegawa S, Hildebrandt T, Henzler M (2002) Two-dimensional plasmon in a metallic monolayer on a semiconductor surface: Exchange-correlation effects. Phys Rev B 66(24):2453201–2453208

    Article  Google Scholar 

  76. Ding ZJ, Li HM, Pu QR, Zhang ZM, Shimizu R (2002) Reflection electron energy loss spectrum of surface plasmon excitation of Ag: a Monte Carlo study. Phys Rev B 66(8):085411

    Article  Google Scholar 

  77. Liebsch A (1998) Prediction of a Ag multipole surface plasmon. Phys Rev B 57(7):3803–3806

    Article  CAS  Google Scholar 

  78. Went MR, Vos M, Werner WSM (2008) Extracting the Ag surface and volume loss functions from reflection electron energy loss spectra. Surf Sci 602(12):2069–2077

    Article  CAS  Google Scholar 

  79. Matthew JAD, Netzer FP, Astl G (1991) EELS of K and Cs on Ag(001): evidence of sudden change in electronic structure with coverage. Surf Sci Lett 259(3):L757–L762

    Article  CAS  Google Scholar 

  80. Tougaard S, Kraaer J (1991) Inelastic-electron-scattering cross sections for Si, Cu, Ag, Au, Ti, Fe, and Pd. Phys Rev B 43(2):1651–1661

    Article  CAS  Google Scholar 

  81. Grimaud CM, Scaroniller L, Andersson M, Palmer RE (1999) Surface plasmon dispersion of a cluster-assembled silver nanoparticle film. Phys Rev B 59(15):9874–9877

    Article  CAS  Google Scholar 

  82. Rocca M, Biggio F, Valbusa U (1990) Surface-plasmon spectrum of Ag(001) measured by high-resolution angle-resolved electron-energy-loss spectroscopy. Phys Rev B 42(5):2835–2841

    Article  CAS  Google Scholar 

  83. Barman SR, Biswas C, Horn K (2004) Collective excitations on silver surfaces studied by photoyield. Surf Sci 566–568 (1–3 part 1): 538–543. http://www.sciencedirect.com/science/article/pii/S0039602804007241

  84. Barman SR, Biswas C, Horn K (2004) Electronic excitations on silver surfaces. Phys Rev B 69(4):454131–454139

    Article  Google Scholar 

  85. Politano A, Chiarello G (2009) Electronic properties of gold thin films studied by electron energy loss spectroscopy. Gold Bull 42(3):195–200

    Article  CAS  Google Scholar 

  86. Liu H, Wang B, Leong ESP, Yang P, Zong Y, Si GY, Teng JH, Maier SA (2010) Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer. ACS Nano 4(6):3139–3146

    Article  CAS  Google Scholar 

  87. Varykhalov A, Shikin AM, Gudat W, Moras P, Grazioli C, Carbone C, Rader O (2005) Probing the ground state electronic structure of a correlated electron system by quantum well states: Ag/Ni(111). Phys Rev Lett 95(24):247601

    Article  CAS  Google Scholar 

  88. Liu Y, Willis RF (2009) The evolution of sheet-plasmon behavior in silver monolayers on Si(111)-(√3 × √3)-Ag surface. Surf Sci 603(13):2115–2119

    Article  CAS  Google Scholar 

  89. Layet JM, Contini R, Derrien J, Lüth H (1986) Coupled interface plasmons of the Ag-Si(111) system as investigated with high-resolution electron energy-loss spectroscopy. Surf Sci 168(1–3):142–148

    Article  CAS  Google Scholar 

  90. De Crescenzi M, Piancastelli MN (1996) Electron scattering and related spectroscopies. World Scientific, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Politano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politano, A. Influence of Structural and Electronic Properties on the Collective Excitations of Ag/Cu(111). Plasmonics 7, 131–136 (2012). https://doi.org/10.1007/s11468-011-9285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9285-5

Keywords

Navigation