Skip to main content
Log in

Refractive Index Sensitivity Analysis of Ag, Au, and Cu Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The localized surface plasmon resonance (LSPR) spectrum of noble metal nanoparticles is studied by quasi-static approximation. Taking the sensitivity of LSPR shape to the size and shape of nanoparticle along with surrounding refractive index, parameters like refractive index sensitivity and sensing figure of merit have been determined. In the present analysis from the sensing relevant parameters, it is concluded that Ag represents a better sensing behavior than Au and Cu over the entire visible to infrared regime of EM spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648

    Article  CAS  Google Scholar 

  2. Noguez C (2007) Surface plasmon on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  3. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem C 103:3073–3077

    CAS  Google Scholar 

  4. Lee K, El-Sayed M (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  5. Sekhon JS, Verma SS (2010) Optimal dimensions of gold nanorod for plasmonic nanosensors. Plasmonics. doi:10.1007/s11468-010-9182-3

    Google Scholar 

  6. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprism. Nano Lett 6:2060–2065

    Article  CAS  Google Scholar 

  7. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  8. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem C 110:7238–7248

    CAS  Google Scholar 

  9. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y (2009) Shape controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 4:171–179

    Article  CAS  Google Scholar 

  10. Becker J, Trugler A, Jakab A, Hohenester U, Sonnichsen C (2010) The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  CAS  Google Scholar 

  11. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  12. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape and size dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  13. Chen H, Shao L, Woo KC, Ming T, Lin H, Wang J (2009) Shape-dependent refractive index sensitivity of gold nanocrystals with the same plasmon resonance wavelength. J Phys Chem C 113:17691–17696

    Article  CAS  Google Scholar 

  14. Sarkar P, Bhui DK, Bar H, Sahoo GP, Samanta S, Pyne S, Misra A (2010) DDA-based simulation of uv-vis extinction spectra of Ag nanorod synthesized through seed-mediated growth process. Plasmonics. doi:10.1007/s11468-010-9167-2

    Google Scholar 

  15. Tilaki RM, Zad AI, Mahdavi SM (2007) Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids. Appl Phys A 88:415–419

    Article  CAS  Google Scholar 

  16. Liu CM, Guo L, Xu HB, Wu ZY, Weber J (2003) Seed-mediated growth and properties of copper nanoparticles, nanoparticle 1D arrays and nanorods. Microelectron Eng 66:107–114

    Article  CAS  Google Scholar 

  17. Shrestha KM, Sorensen CM, Klabunde KJ (2010) Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J Phys Chem C 114:14368–14376

    CAS  Google Scholar 

  18. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  19. Chan GH, Zhao J, Schatz GC, Van Duyne RP (2008) Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C 112:13958–13963

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagmeet Singh Sekhon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Sekhon, J., S Verma, S. Refractive Index Sensitivity Analysis of Ag, Au, and Cu Nanoparticles. Plasmonics 6, 311–317 (2011). https://doi.org/10.1007/s11468-011-9206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9206-7

Keywords

Navigation