Skip to main content
Log in

Plasmonic Optical Properties and Applications of Metal Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this review article, we provide an overview of recent research activities in the study of plasmonic optical properties of metal nanostructures with emphasis on understanding the relation between surface plasmon absorption and structure. Both experimental results and theoretical calculations have indicated that the plasmonic absorption strongly depends on the detailed structure of the nanomaterials. Examples discussed include spherical nanoparticles, nanorods, nanowires, hollow nanospheres, aggregates, and nanocages. Plasmon–phonon coupling measured from dynamic studies as a function of particle size, shape, and aggregation state is also reviewed. The fascinating optical properties of metal nanostructures find important applications in a number of technological areas including surface plasmon resonance, surface-enhanced Raman scattering, and photothermal imaging and therapy. Their novel optical properties and emerging applications are illustrated using specific examples from recent literature. The case of hollow nanosphere structures is highlighted to illustrate their unique features and advantages for some of these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Henglein A (1989) Chem Rev 89:1861 doi:10.1021/cr00098a010

    CAS  Google Scholar 

  2. Pileni MP, Taleb A, Petit C (1998) J Dispers Sci Technol 19:185 doi:10.1080/01932699808913171

    CAS  Google Scholar 

  3. Emory SR, Nie S (1998) J Phys Chem B 102:493 doi:10.1021/jp9734033

    CAS  Google Scholar 

  4. Heilmann A, Kreibig U (2000) Eur Phys J Appl Phys 10:193 doi:10.1051/epjap:2000132

    CAS  Google Scholar 

  5. Lazarides AA, Kelly KL, Jensen TR, Schatz GC (2000) J Mol Struct 529:59 doi:10.1016/S0166-1280(00)00532-7

    CAS  Google Scholar 

  6. Zhang JZ, Wang ZL, Liu J, Chen S, Liu G-Y (2003) Self-assembled nanostructures. Kluwer Academic/Plenum, New York

    Google Scholar 

  7. Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL et al (2002) J Phys Chem B 106:7005 doi:10.1021/jp0204197

    CAS  Google Scholar 

  8. Murphy CJ, San TK, Gole AM, Orendorff CJ, Gao JX, Gou L et al (2005) J Phys Chem B 109:13857 doi:10.1021/jp0516846

    CAS  Google Scholar 

  9. Gou LF, Murphy CJ (2005) Chem Mater 17:3668 doi:10.1021/cm050525w

    CAS  Google Scholar 

  10. Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) MRS Bull 30:349

    CAS  Google Scholar 

  11. Nikoobakht B, El-Sayed MA (2003) Chem Mater 15:1957 doi:10.1021/cm020732l

    CAS  Google Scholar 

  12. Sun YG, Mayers BT, Xia YN (2002) Nano Lett 2:481 doi:10.1021/nl025531v

    CAS  Google Scholar 

  13. Sun YG, Mayers B, Xia YN (2003) Nano Lett 3:675 doi:10.1021/nl034140t

    CAS  Google Scholar 

  14. Schwartzberg AM, Olson TY, Talley CE, Zhang JZ (2006) J Phys Chem B 110:19935 doi:10.1021/jp062136a

    CAS  Google Scholar 

  15. Schwartzberg AM, Grant CD, van Buuren T, Zhang JZ (2007) J Phys Chem C 111:8892 doi:10.1021/jp067697g

    CAS  Google Scholar 

  16. Gonzalez AL, Noguez C (2007) J Comput Theor Nanoscience 4:231

    CAS  Google Scholar 

  17. Hao E, Li SY, Bailey RC, Zou SL, Schatz GC, Hupp JT (2004) J Phys Chem B 108:1224 doi:10.1021/jp036301n

    CAS  Google Scholar 

  18. Shanmukh S, Jones L, Driskell J, Zhao YP, Dluhy R, Tripp RA (2006) Nano Lett 6:2630 doi:10.1021/nl061666f

    CAS  Google Scholar 

  19. Driskell JD, Shanmukh S, Liu Y, Chaney SB, Tang XJ, Zhao YP et al (2008) J Phys Chem C 112:895 doi:10.1021/jp075288u

    CAS  Google Scholar 

  20. Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) J Phys Chem 100:837 doi:10.1021/jp952291h

    CAS  Google Scholar 

  21. Liao XH, Zhu JJ, Zhao XN, Chen HY (2000) Chem J Chin Universities Chinese 21:1837

    CAS  Google Scholar 

  22. Lin XQ, Wang SQ (2005) Indian J Chem Sect A Inorganic Bio Inorganic Phys Theor Anal Chem 44:1016

    Google Scholar 

  23. Starowicz M, Stypula B, Banas J (2006) Electrochem Commun 8:227 doi:10.1016/j.elecom.2005.11.018

    CAS  Google Scholar 

  24. Wadkar MM, Chaudhari VR, Haram SK (2006) J Phys Chem B 110:20889 doi:10.1021/jp063422p

    CAS  Google Scholar 

  25. Shang L, Chen HJ, Dong SJ (2007) J Phys Chem C 111:10780 doi:10.1021/jp068713c

    CAS  Google Scholar 

  26. Lin SC, Chen SY, Chen YT, Cheng SY (2008) J Alloy Comp 449:232 doi:10.1016/j.jallcom.2006.01.147

    CAS  Google Scholar 

  27. Turkevich J, Stevenson PC, Hiller J (1951) Discuss Faraday Soc 11:55 doi:10.1039/df9511100055

    Google Scholar 

  28. Frens G (1973) Nat Phys Sci (Lond) 241:20

    CAS  Google Scholar 

  29. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) J Phys Chem B 110:15700 doi:10.1021/jp061667w

    CAS  Google Scholar 

  30. Ji XH, Song XN, Li J, Bai YB, Yang WS, Peng XG (2007) J Am Chem Soc 129:13939 doi:10.1021/ja074447k

    CAS  Google Scholar 

  31. Lee PC, Meisel D (1982) J Phys Chem 86:3391 doi:10.1021/j100214a025

    CAS  Google Scholar 

  32. Henglein A (1993) Isr J Chem 33:77

    CAS  Google Scholar 

  33. Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R et al (2004) J Phys Chem B 108:19191 doi:10.1021/jp048430p

    CAS  Google Scholar 

  34. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630 doi:10.1002/anie.200603148

    CAS  Google Scholar 

  35. Smetana AB, Wang JS, Boeckl J, Brown GJ, Wai CM (2007) Langmuir 23:10429 doi:10.1021/la701229q

    CAS  Google Scholar 

  36. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065 doi:10.1021/jp0107964

    CAS  Google Scholar 

  37. Jana NR, Gearheart L, Murphy C (2001) J Chem Commun 2001:617 doi:10.1039/b100521i

    Google Scholar 

  38. Brown KR, Walter DG, Natan M (2000) J Chem Mater 12:306 doi:10.1021/cm980065p

    CAS  Google Scholar 

  39. Brown KR, Lyon LA, Fox AP, Reiss BD, Natan M (2000) J Chem Mater 12:314 doi:10.1021/cm980066h

    CAS  Google Scholar 

  40. Rodriguez-Fernandez J, Perez-Juste J, de Abajo FJG, Liz-Marzan LM (2006) Langmuir 22:7007 doi:10.1021/la060990n

    CAS  Google Scholar 

  41. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) J Mater Chem 12:1765 doi:10.1039/b200953f

    CAS  Google Scholar 

  42. Gole A, Murphy C (2004) J Chem Mater 16:3633 doi:10.1021/cm0492336

    CAS  Google Scholar 

  43. Maillard M, Giorgio S, Pileni MP (2003) J Phys Chem B 107:2466 doi:10.1021/jp022357q

    CAS  Google Scholar 

  44. Oliver A, Reyes-Esqueda JA, Cheang-Wong JC, Roman-Velazquez CE, Crespo-Sosa A, Rodriguez-Fernandez L et al (2006) Phys Rev B 74:245425.1

    Google Scholar 

  45. Grzelczak M, Perez-Juste J, de Abajo FJG, Liz-Marzan LM (2007) J Phys Chem C 111:6183 doi:10.1021/jp0671502

    CAS  Google Scholar 

  46. Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487 doi:10.1038/nature02020

    CAS  Google Scholar 

  47. Liz-Marzan LM (2006) Langmuir 22:32 doi:10.1021/la0513353

    CAS  Google Scholar 

  48. Al-Sherbini AA (2004) Colloids Surf A Physicochem Eng Asp 246:61 doi:10.1016/j.colsurfa.2004.06.038

    CAS  Google Scholar 

  49. Lee KS, El-Sayed MA (2005) J Phys Chem B 109:20331 doi:10.1021/jp054385p

    CAS  Google Scholar 

  50. Perez-Juste J, Liz-Marzan LM, Carnie S, Chan DYC, Mulvaney P (2004) Adv Funct Mater 14:571 doi:10.1002/adfm.200305068

    CAS  Google Scholar 

  51. Murphy CJ, Jana NR (2002) Adv Mater 14:80 doi:10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#

    CAS  Google Scholar 

  52. Brioude A, Jiang XC, Pileni MP (2005) J Phys Chem B 109:13138 doi:10.1021/jp0507288

    CAS  Google Scholar 

  53. Jiang XC, Brioude A, Pileni MP (2006) Colloids and Surf A Physicochem Eng Asp 277:201

    CAS  Google Scholar 

  54. Brioude A, Pileni MP (2005) J Phys Chem B 109:23371 doi:10.1021/jp055265k

    CAS  Google Scholar 

  55. Xu XD, Cortie MB (2006) Adv Funct Mater 16:2170 doi:10.1002/adfm.200500878

    CAS  Google Scholar 

  56. Zhang JH, Liu HY, Wang ZL, Ming NB (2007) Appl Phys Lett 90

  57. Bukasov R, Shumaker-Parry JS (2007) Nano Lett 7:1113 doi:10.1021/nl062317o

    CAS  Google Scholar 

  58. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901 doi:10.1126/science.1066541

    CAS  Google Scholar 

  59. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia YA (2006) J Phys Chem B 110:15666 doi:10.1021/jp0608628

    CAS  Google Scholar 

  60. Sun YG, Mayers B, Xia YN (2003) Adv Mater 15:641 doi:10.1002/adma.200301639

    CAS  Google Scholar 

  61. Sun YG, Wiley B, Li ZY, Xia YN (2004) J Am Chem Soc 126:9399 doi:10.1021/ja048789r

    CAS  Google Scholar 

  62. Wang CH, Sun DC, Xia XH (2006) Nanotechnology 17:651 doi:10.1088/0957-4484/17/3/006

    Google Scholar 

  63. Maillard M, Huang PR, Brus L (2003) Nano Lett 3:1611 doi:10.1021/nl034666d

    CAS  Google Scholar 

  64. Muniz-Miranda M (2004) J Raman Spectrosc 35:839 doi:10.1002/jrs.1220

    CAS  Google Scholar 

  65. Guin D, Manorama SV, Latha JNL, Singh S (2007) J Phys Chem C 111:13393 doi:10.1021/jp072646k

    CAS  Google Scholar 

  66. Tan S, Erol M, Attygalle A, Du H, Sukhishvili S (2007) Langmuir 23:9836 doi:10.1021/la701236v

    CAS  Google Scholar 

  67. Sergeev BM, Sergeev GB (2007) Colloid J 69:639 doi:10.1134/S1061933X07050158

    CAS  Google Scholar 

  68. Hayashi Y, Fujita T, Tokunaga T, Kaneko K, Butler T, Rupesinghe N et al (2007) Diam Relat Mater 16:1200 doi:10.1016/j.diamond.2006.11.039

    CAS  Google Scholar 

  69. Chen JY, Li ZY, Chao DN, Zhang WJ, Wang C (2008) Mater Lett 62:692 doi:10.1016/j.matlet.2007.06.047

    CAS  Google Scholar 

  70. Xiong YQ, Wu H, Guo Y, Sun Y, Yang DQ, Da D (2000) Thin Solid Films 375:300 doi:10.1016/S0040-6090(00)01253-0

    CAS  Google Scholar 

  71. Nie KM, Hu JL, Pang WM, Zhu QR (2007) Mater Lett 61:3567 doi:10.1016/j.matlet.2006.11.115

    CAS  Google Scholar 

  72. Pol VG, Grisaru H, Gedanken A (2005) Langmuir 21:3635 doi:10.1021/la047465d

    CAS  Google Scholar 

  73. Liu GY, Xu S, Qian YL (2000) Acc Chem Res 33:457 doi:10.1021/ar980081s

    Google Scholar 

  74. Wang ZL (2000) J Phys Chem B 104:1153 doi:10.1021/jp993593c

    CAS  Google Scholar 

  75. Wang ZL, Poncharal P, de Heer WA (2000) Microsc Microanal 6:224

    CAS  Google Scholar 

  76. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Google Scholar 

  77. Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL et al (1996) Adv Mater 8:428 doi:10.1002/adma.19960080513

    CAS  Google Scholar 

  78. Murray CB, Kagan CR, Bawendi MG (1995) Science 270:1335 doi:10.1126/science.270.5240.1335

    CAS  Google Scholar 

  79. Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545 doi:10.1146/annurev.matsci.30.1.545

    CAS  Google Scholar 

  80. Alivisatos AP (1996) Science 271:933 doi:10.1126/science.271.5251.933

    CAS  Google Scholar 

  81. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930 doi:10.1103/PhysRevLett.56.930

    Google Scholar 

  82. Guntherodt HJ, Anselmetti D, Meyer E (eds) (1995) Forces in scanning probe methods, vol. 286. Kluwer Academic, Heidelberg, p 644

  83. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig JAD, Lyman CE, Fiori C, Lifshin E (1992) Scanning electron microscopy and x-ray microanalysis, 2nd edn. Plenum, New York

    Google Scholar 

  84. Zhou W, Wang ZL (eds) (2007) Scanning microscopy for nanotechnology, 1st edn. Springer, New York, p 522

  85. Wang ZL (ed) (2000) Characterization of nanophase materials. Wiley-VCH, New York, p 406

  86. Wang ZL (1998) Adv Mater 10:13 doi:10.1002/(SICI)1521-4095(199801)10:1<13::AID-ADMA13>3.0.CO;2-W

    Google Scholar 

  87. Barr TL (1994) Modern ESCA: the principles and practice of x-ray photoelectron spectroscopy. CRC, New York

    Google Scholar 

  88. Koningsberger DC, Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley-Interscience, New York, p 688

  89. Zhang JZ, Schwartzberg AM, Norman T, Grant CD, Liu J, Bridges F et al (2005) Nano Lett 5:809 doi:10.1021/nl0479379

    CAS  Google Scholar 

  90. Zhou HS, Honma I, Komiyama H, Haus JW (1994) Phys Rev B Condens Matter 50:12052 doi:10.1103/PhysRevB.50.12052

    CAS  Google Scholar 

  91. Averitt RD, Sarkar D, Halas N (1997) J Phys Rev Lett 78:4217 doi:10.1103/PhysRevLett.78.4217

    CAS  Google Scholar 

  92. Norman TJ, Grant CD, Schwartzberg AM, Zhang JZ (2005) Opt Mater 27:1197 doi:10.1016/j.optmat.2004.10.016

    CAS  Google Scholar 

  93. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  94. Mie G (1908) Annalen Phys 25:377 doi:10.1002/andp.19083300302

    CAS  Google Scholar 

  95. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  96. Halperin WP (1986) Rev Mod Phys 58:533 doi:10.1103/RevModPhys.58.533

    CAS  Google Scholar 

  97. Genzel L, Martin TP, Kreibig U (1975) Z Phys B 21:339 doi:10.1007/BF01325393

    CAS  Google Scholar 

  98. Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881 doi:10.1039/ft9918703881

    CAS  Google Scholar 

  99. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) J Phys Chem B 101:3706 doi:10.1021/jp962922n

    CAS  Google Scholar 

  100. Hodak JH, Henglein A, Hartland GV (2000) J Phys Chem B 104:9954 doi:10.1021/jp002256x

    CAS  Google Scholar 

  101. Noguez C (2005) Opt Mater 27:1204 doi:10.1016/j.optmat.2004.11.012

    Google Scholar 

  102. Asano S, Yamamoto G (1975) Appl Opt 14:29

    Google Scholar 

  103. Lind AC, Greenber JM (1966) J Appl Phys 37:3195 doi:10.1063/1.1703184

    Google Scholar 

  104. Sosa IO, Noguez C, Barrera RG (2003) J Phys Chem B 107:6269 doi:10.1021/jp0274076

    CAS  Google Scholar 

  105. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668 doi:10.1021/jp026731y

    CAS  Google Scholar 

  106. Noguez C (2007) J Phys Chem C 111:3806 doi:10.1021/jp066539m

    CAS  Google Scholar 

  107. Payne EK, Shuford KL, Park S, Schatz GC, Mirkin CA (2006) J Phys Chem B 110:2150 doi:10.1021/jp056606x

    CAS  Google Scholar 

  108. Yang WH, Schatz GC, Vanduyne RP (1995) J Chem Phys 103:869 doi:10.1063/1.469787

    CAS  Google Scholar 

  109. Fuchs R (1975) Phys Rev B 11:1732 doi:10.1103/PhysRevB.11.1732

    CAS  Google Scholar 

  110. Kumbhar AS, Kinnan MK, Chumanov G (2005) J Am Chem Soc 127:12444 doi:10.1021/ja053242d

    CAS  Google Scholar 

  111. Nikoobakht B, El-Sayed MA (2003) J Phys Chem 107:3372

    CAS  Google Scholar 

  112. Orendorff CJ, Gole A, Sau T, Murphy CJ (2005) Anal Chem 77:3261

    CAS  Google Scholar 

  113. Orendorff CJ, Gearheart L, Jana NR, Murphy C (2006) J Phys Chem Chem Phys 8:165 doi:10.1039/b512573a

    CAS  Google Scholar 

  114. Van Duyne RP (2002) Abstr Pap Am Chem Soc 223:003

    Google Scholar 

  115. Haynes CL, Van Duyne RP (2003) Abstr Pap Am Chem Soc 225:U618

    Google Scholar 

  116. Haynes CL, Yonzon CR, Zhang XY, Van Duyne RP (2005) J Raman Spectrosc 36:471 doi:10.1002/jrs.1376

    CAS  Google Scholar 

  117. Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Nano Lett 6:2060 doi:10.1021/nl061286u

    CAS  Google Scholar 

  118. Wiley B, Sun YG, Mayers B, Xia YN (2005) Chemistry A Eur J 11:454 doi:10.1002/chem.200400927

    CAS  Google Scholar 

  119. Hu M, Petrova H, Sekkinen AR, Chen JY, McLellan JM, Li ZY et al (2006) J Phys Chem B 110:19923 doi:10.1021/jp0621068

    CAS  Google Scholar 

  120. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD et al (2006) Chem Soc Rev 35:1084 doi:10.1039/b517615h

    CAS  Google Scholar 

  121. Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) J Chem Phys 111:4729 doi:10.1063/1.479235

    CAS  Google Scholar 

  122. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Nano Lett 4:2355 doi:10.1021/nl048610a

    CAS  Google Scholar 

  123. Radloff C, Halas NJ (2004) Nano Lett 4:1323 doi:10.1021/nl049597x

    CAS  Google Scholar 

  124. Schwartzberg AM, Oshiro TY, Zhang JZ, Huser T, Talley CE (2006) Anal Chem 78:4732 doi:10.1021/ac060220g

    CAS  Google Scholar 

  125. Reyes-Esqueda JA, Torres-Torres C, Cheang-Wong JC, Crespo-Sosa A, Rodriguez-Fernandez L, Noguez C et al (2008) Opt Express 16:710 doi:10.1364/OE.16.000710

    CAS  Google Scholar 

  126. González AL, Reyes-Esqueda JA, Noguez C (2008) J Phys Chem C 112:7356 doi:10.1021/jp800432q

    Google Scholar 

  127. Figliozzi P, Sun L, Jiang Y, Matlis N, Mattern B, Downer MC et al (2005) Phys Rev Lett 94:047401

    CAS  Google Scholar 

  128. Tao A, Sinsermsuksakul P, Yang PD (2006) Angew Chem Int Ed 45:4597 doi:10.1002/anie.200601277

    CAS  Google Scholar 

  129. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371 doi:10.1103/RevModPhys.77.371

    CAS  Google Scholar 

  130. Sun Y, Xia Y (2002) Science 298:2176 doi:10.1126/science.1077229

    CAS  Google Scholar 

  131. Zhou M, Chen S, Zhao S (2006) J Phys Chem B 110:4510 doi:10.1021/jp060200i

    CAS  Google Scholar 

  132. Chen Y, Gu X, Nie C-G, Jiang Z-Y, Xie Z-X, Lin C-J (2005) Chem Commun (Camb) 33:4181 doi:10.1039/b504911c

    Google Scholar 

  133. Salzemann C, Brioude A, Pileni MP (2006) J Phys Chem B 110:7208 doi:10.1021/jp0601567

    CAS  Google Scholar 

  134. Banerjee IA, Yu LT, Matsui H (2003) Proc Natl Acad Sci U S A 100:14678 doi:10.1073/pnas.2433456100

    CAS  Google Scholar 

  135. Gonzalez AL, Noguez C (2007) Phys Status Solidi 4:4118 doi:10.1002/pssc.200675903

    CAS  Google Scholar 

  136. Yacaman MJ, Ascencio JA, Liu HB, Gardea-Torresdey J (2001) J Vac Sci Technol B Int J Devoted Microelectron Nanometer Struct Processing Meas Phenom 19:1091 doi:10.1116/1.1387089

    CAS  Google Scholar 

  137. Yang CY (1979) J Cryst Growth 47:274 doi:10.1016/0022-0248(79)90252-5

    CAS  Google Scholar 

  138. Kuo CH, Chiang TF, Chen LJ, Huang MH (2004) Langmuir 20:7820 doi:10.1021/la049172q

    CAS  Google Scholar 

  139. Wei G, Zhou HL, Liu ZG, Song YH, Wang L, Sun LL et al (2005) J Phys Chem B 109:8738 doi:10.1021/jp044314a

    CAS  Google Scholar 

  140. Nilius N, Ernst N, Freund HJ (2000) Phys Rev Lett 84:3994 doi:10.1103/PhysRevLett.84.3994

    CAS  Google Scholar 

  141. Marks LD (1994) Rep Prog Phys 57:603 doi:10.1088/0034-4885/57/6/002

    CAS  Google Scholar 

  142. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RR, Zou SL (2005) MRS Bull 30:368

    CAS  Google Scholar 

  143. Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman scattering: physics and applications (Topics in applied physics). vol. 103. Springer, Heidelberg, p 19

    Google Scholar 

  144. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR et al (2006) Faraday Discuss 132:9 doi:10.1039/b513431p

    CAS  Google Scholar 

  145. Haruta M, Kageyama H, Kamijo N, Kobayashi T, Delannay F (1989) Fine structure of novel gold catalysts prepared by coprecipitation. In: Inui T (ed) Successful design of catalysts: future requirements and development. vol. 44. Elsevier Science, Amsterdam, p 33

    Google Scholar 

  146. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 2:405 doi:10.1246/cl.1987.405

    Google Scholar 

  147. Li KR, Stockman MI, Bergman DJ (2005) Phys Rev B 72:035427

    Google Scholar 

  148. Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R (2006) Phys Rev Lett 97:060801

    CAS  Google Scholar 

  149. Roman-Velazquez CE, Noguez C, Barrera RG (2000) Phys Rev B 61:10427 doi:10.1103/PhysRevB.61.10427

    CAS  Google Scholar 

  150. Roman-Velazquez CE, Noguez C, Barrera RG (2000) Optical characterization of a spheroidal nanoparticle on a substrate. In: Materials Research Society Symposium on Nanophase and Nanocomposite Materials III

  151. Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Phys Rev B 65:235424 doi:10.1103/PhysRevB.65.235424

    Google Scholar 

  152. Lazzari R, Simonsen I, Jupille J (2003) Europhys Lett 61:541 doi:10.1209/epl/i2003-00163-6

    CAS  Google Scholar 

  153. Lazzari R, Jupille J, Layet JM (2003) Phys Rev B 68:045428 doi:10.1103/PhysRevB.68.045428

    Google Scholar 

  154. Xu G, Tazawa M, Jin P, Nakao S (2005) Appl Phys A Mater Sci Process 80:1535 doi:10.1007/s00339–003–2395-y

    CAS  Google Scholar 

  155. Garnett JCM (1904) Philos Trans R Soc Lond A Contain Pap Math Phys Character 203:385

    CAS  Google Scholar 

  156. Noguez C, Barrera RG (1998) Phys Rev B 57:302 doi:10.1103/PhysRevB.57.302

    CAS  Google Scholar 

  157. Penninkhof JJ, Polman A, Sweatlock LA, Maier SA, Atwater HA, Vredenberg AM et al (2003) Appl Phys Lett 83:4137 doi:10.1063/1.1627936

    CAS  Google Scholar 

  158. Sweatlock LA, Maier SA, Atwater HA, Penninkhof JJ, Polman A (2005) Phys Rev B 71:235408

    Google Scholar 

  159. Lazarides AA, Schatz GC (2000) J Phys Chem B 104:460 doi:10.1021/jp992179+

    CAS  Google Scholar 

  160. Barrera RG, Noguez C, Anda EV (1992) J Chem Phys 96:1574 doi:10.1063/1.462141

    Google Scholar 

  161. Kumar S, Cukier RI (1989) J Phys Chem 93:4334 doi:10.1021/j100347a084

    CAS  Google Scholar 

  162. Cichocki B, Felderhof BU (1989) J Chem Phys 90:4960 doi:10.1063/1.456596

    Google Scholar 

  163. Barrera RG, Delcastillomussot M, Monsivais G, Villasenor P, Mochan WL (1991) Phys Rev B 43:13819 doi:10.1103/PhysRevB.43.13819

    CAS  Google Scholar 

  164. Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L et al (2003) J Phys Chem B 107:7337 doi:10.1021/jp034234r

    CAS  Google Scholar 

  165. Hicks EM, Zou SL, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L et al (2005) Nano Lett 5:1065 doi:10.1021/nl0505492

    CAS  Google Scholar 

  166. Nau D, Schonhardt A, Bauer C, Christ A, Zentgraf T, Kuhl J et al (2007) Phys Rev Lett 98:133902

    CAS  Google Scholar 

  167. Zhang JZ (1997) Acc Chem Res 30:423 doi:10.1021/ar960178j

    CAS  Google Scholar 

  168. Zhang JZ (2000) J Phys Chem B 104:7239 doi:10.1021/jp000594s

    CAS  Google Scholar 

  169. Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Chem Phys Lett 270:139 doi:10.1016/S0009-2614(97)00339-4

    CAS  Google Scholar 

  170. Link S, El-Sayed MA (1999) J Phys Chem B 103:8410 doi:10.1021/jp9917648

    CAS  Google Scholar 

  171. Link S, Furube A, Mohamed MB, Asahi T, Masuhara H, El-Sayed MA (2002) J Phys Chem B 106:945 doi:10.1021/jp013311k

    CAS  Google Scholar 

  172. Logunov SL, Ahmadi TS, El-Sayed MA, Khoury JT, Whetten RL (1997) J Phys Chem B 101:3713 doi:10.1021/jp962923f

    CAS  Google Scholar 

  173. Hodak J, Martini I, Hartland GV (1998) Chem Phys Lett 284:135 doi:10.1016/S0009-2614(97)01369-9

    CAS  Google Scholar 

  174. Faulhaber AE, Smith BA, Andersen JK, Zhang JZ (1996) Mol Cryst Liq Cryst Science Technol Sect A Mol Cryst Liq Cryst 283:25

    CAS  Google Scholar 

  175. Darugar Q, Landes C, Link S, Schill A, El-Sayed MA (2003) Chem Phys Lett 373:284 doi:10.1016/S0009-2614(03)00213-6

    CAS  Google Scholar 

  176. Link S, Hathcock DJ, Nikoobakht B, El-Sayed MA (2003) Adv Mater 15:393 doi:10.1002/adma.200390088

    CAS  Google Scholar 

  177. Hodak JH, Henglein A, Hartland GV (2000) J Chem Phys 112:5942 doi:10.1063/1.481167

    CAS  Google Scholar 

  178. Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL (2002) J Phys Chem B 106:3410 doi:10.1021/jp014259v

    CAS  Google Scholar 

  179. Grant CD, Schwartzberg AM, Yang YY, Chen SW, Zhang JZ (2004) Chem Phys Lett 383:31 doi:10.1016/j.cplett.2003.10.126

    CAS  Google Scholar 

  180. Hartland GV (2004) Phys Chem Chem Phys 6:5263 doi:10.1039/b413368d

    CAS  Google Scholar 

  181. Hu M, Petrova H, Chen JY, McLellan JM, Siekkinen AR, Marquez M et al (2006) J Phys Chem B 110:1520 doi:10.1021/jp0571628

    CAS  Google Scholar 

  182. Petrova H, Lin CH, Hu M, Chen JY, Siekkinen AR, Xia YN et al (2007) Nano Lett 7:1059 doi:10.1021/nl0702766

    CAS  Google Scholar 

  183. Petrova H, Lin CH, de Liejer S, Hu M, McLellan JM, Siekkinen AR et al (2007) J Chem Phys 126:094709 doi:10.1063/1.2672907

    Google Scholar 

  184. Sando GM, Berry AD, Campbell PM, Baronavski AP, Owrutsky JC (2007) Plasmonics 2:23 doi:10.1007/s11468–006–9021–8

    CAS  Google Scholar 

  185. Elsayed-Ali HE, Norris TB, Pessot MA, Mourou GA (1987) Phys Rev Lett 58:1212 doi:10.1103/PhysRevLett.58.1212

    CAS  Google Scholar 

  186. Schoenlein RW, Lin WZ, Fujimoto JG, Easley GL (1987) Phys Rev Lett 58:1680 doi:10.1103/PhysRevLett.58.1680

    CAS  Google Scholar 

  187. Sun CK, Vallee F, Acioli LH, Ippen EP, Fujimoto JG (1994) Phys Rev B Condens Matter 50:15337 doi:10.1103/PhysRevB.50.15337

    CAS  Google Scholar 

  188. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  189. Nisoli M, DeSilvestri S, Cavalleri A, Malvezzi AM, Stella A, Lanzani G et al (1997) Phys Rev B Condens Matter 55:13424 doi:10.1103/PhysRevB.55.R13424

    Google Scholar 

  190. Hodak JH, Martini I, Hartland GV (1998) J Chem Phys 108:9210 doi:10.1063/1.476374

    CAS  Google Scholar 

  191. Voisin C, Del Fatti N, Christofilos D, Vallee F (2001) J Phys Chem B 105:2264 doi:10.1021/jp0038153

    CAS  Google Scholar 

  192. Voisin C, Christofilos D, Loukakos PA, Del Fatti N, Vallee F, Lerme J et al (2004) Phys Rev B 69:195416

    Google Scholar 

  193. von Plessen G, Perner M, Feldmann J (2000) Appl Phys B 71:381

    Google Scholar 

  194. Hartland GV, Hu M, Wilson O, Mulvaney P, Sader JE (2002) J Phys Chem B 106:743 doi:10.1021/jp013887+

    CAS  Google Scholar 

  195. Grant CD, Schwartzberg AM, Norman TJ, Zhang JZ (2003) J Am Chem Soc 125:549 doi:10.1021/ja028532y

    CAS  Google Scholar 

  196. Lazarides AA, Schatz GC (2000) J Chem Phys 112:2987 doi:10.1063/1.480873

    CAS  Google Scholar 

  197. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) J Am Chem Soc 122:4640 doi:10.1021/ja993825l

    CAS  Google Scholar 

  198. Heath JR, Knobler CM, Leff DV (1997) J Phys Chem B 101:189 doi:10.1021/jp9611582

    CAS  Google Scholar 

  199. Shipway AN, Lahav M, Gabai R, Willner I (2000) Langmuir 16:8789 doi:10.1021/la000316k

    CAS  Google Scholar 

  200. Abiko F, Tomoo K, Mizuno A, Morino S, Imataka H, Ishida T (2007) Biochem Biophys Res Commun 355:667 doi:10.1016/j.bbrc.2007.01.198

    CAS  Google Scholar 

  201. Chen LL, Deng L, Liu LL, Peng ZH (2007) Biosens Bioelectron 22:1487 doi:10.1016/j.bios.2006.06.038

    CAS  Google Scholar 

  202. Du XZ, Wang YC (2007) J Phys Chem B 111:2347 doi:10.1021/jp0653196

    CAS  Google Scholar 

  203. Dong H, Cao XD, Li CM, Hu WH (2008) Biosens Bioelectron 23:1055 doi:10.1016/j.bios.2007.10.026

    CAS  Google Scholar 

  204. Wilkop T, Wang ZZ, Cheng Q (2004) Langmuir 20:11141 doi:10.1021/la048177k

    CAS  Google Scholar 

  205. Yuk JS, Hong DG, Jung HI, Ha KS (2006) Sens Actuators B Chem 119:673 doi:10.1016/j.snb.2006.01.031

    Google Scholar 

  206. Li Y, Lee HJ, Corn RM (2006) Nucleic Acids Res 34:6416 doi:10.1093/nar/gkl738

    CAS  Google Scholar 

  207. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267 doi:10.1146/annurev.physchem.58.032806.104607

    CAS  Google Scholar 

  208. Stuart DA, Yonzon CR, Zhang XY, Lyandres O, Shah NC, Glucksberg MR et al (2005) Anal Chem 77:4013 doi:10.1021/ac0501238

    CAS  Google Scholar 

  209. Haemers S, Koper GJM, van der Leeden MC, Frens G (2002) Langmuir 18:2069 doi:10.1021/la010506a

    CAS  Google Scholar 

  210. Haes AJ, Van Duyne RP (2002) J Am Chem Soc 124:10596 doi:10.1021/ja020393x

    CAS  Google Scholar 

  211. Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) J Am Chem Soc 127:2264 doi:10.1021/ja044087q

    CAS  Google Scholar 

  212. Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2002) J Phys Chem B 106:853 doi:10.1021/jp013638l

    CAS  Google Scholar 

  213. Yonzon CR, Stuart DA, Zhang XY, McFarland AD, Haynes CL, Van Duyne RP (2005) Talanta 67:438 doi:10.1016/j.talanta.2005.06.039

    CAS  Google Scholar 

  214. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW et al (2005) Anal Biochem 344:161

    CAS  Google Scholar 

  215. Haes AJ, Zou SL, Zhao J, Schatz GC, Van Duyne RP (2006) J Am Chem Soc 128:10905 doi:10.1021/ja063575q

    CAS  Google Scholar 

  216. Meli MV, Lennox RB (2007) J Phys Chem C 111:3658 doi:10.1021/jp067241z

    CAS  Google Scholar 

  217. Stancu IC, Fernandez-Gonzalez A, Salzer R (2007) J Optoelectronics Adv Mater 9:1883

    CAS  Google Scholar 

  218. Toderas F, Baia M, Baia L, Astilean S (2007) Nanotechnology 18:255702

    Google Scholar 

  219. Fu E, Chinowsky T, Nelson K, Johnston K, Edwards T, Helton K et al (2007) SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Ann N Y Acad Sci 1098:335

    CAS  Google Scholar 

  220. Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Anal Biochem 363:239 doi:10.1016/j.ab.2007.01.030

    CAS  Google Scholar 

  221. Ray K, Szmacinski H, Enderlein J, Lakowicz JR (2007) Appl Phys Lett 90:251116 doi:10.1063/1.2751125

    Google Scholar 

  222. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Nano Lett 7:2101 doi:10.1021/nl071084d

    CAS  Google Scholar 

  223. Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) J Phys Chem C 111:11784 doi:10.1021/jp067887r

    CAS  Google Scholar 

  224. Ferraro JR, Nakamoto K (1994) Introductory Raman spectroscopy. Academic, Boston

    Google Scholar 

  225. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163 doi:10.1016/0009-2614(74)85388-1

    CAS  Google Scholar 

  226. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215 doi:10.1021/ja00457a071

    CAS  Google Scholar 

  227. Jeanmaire DL, Vanduyne RP (1977) J Electroanal Chem 84:1 doi:10.1016/S0022-0728(77)80224-6

    CAS  Google Scholar 

  228. Moskovits M (1978) J Chem Phys 69:4159 doi:10.1063/1.437095

    CAS  Google Scholar 

  229. Michaels AM, Jiang J, Brus L (2000) J Phys Chem B 104:11965 doi:10.1021/jp0025476

    CAS  Google Scholar 

  230. Brus L (2001) Abstr Pap Am Chem Soc 221:112

    Google Scholar 

  231. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964 doi:10.1021/jp034632u

    CAS  Google Scholar 

  232. Nie SM, Emery SR (1997) Science 275:1102 doi:10.1126/science.275.5303.1102

    CAS  Google Scholar 

  233. Kneipp K, Harrison GR, Emory SR, Nie SM (1999) Chimia (Aarau) 53:35

    Google Scholar 

  234. Nie SM (2001) Abstr Pap Am Chem Soc 221:U244

    Google Scholar 

  235. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R et al (1997) Phys Rev Lett 78:1667 doi:10.1103/PhysRevLett.78.1667

    CAS  Google Scholar 

  236. Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari RR, Feld MS (1998) J Raman Spectrosc 29:743 doi:10.1002/(SICI)1097-4555(199808)29:8<743::AID-JRS294>3.0.CO;2-M

    CAS  Google Scholar 

  237. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Phys 247:155 doi:10.1016/S0301-0104(99)00165-2

    CAS  Google Scholar 

  238. Seballos L, Olson TY, Zhang JZ (2006) J Chem Phys 125:234706 doi:10.1063/1.2404648

    Google Scholar 

  239. Seballos L, Richards N, Stevens DJ, Patel M, Schuresko L, Lokey S et al (2007) Chem Phys Lett 447:335 doi:10.1016/j.cplett.2007.09.040

    CAS  Google Scholar 

  240. Moskovits M (1985) Rev Mod Phys 57:783 doi:10.1103/RevModPhys.57.783

    CAS  Google Scholar 

  241. Moskovits M (2005) J Raman Spectrosc 36:485 doi:10.1002/jrs.1362

    CAS  Google Scholar 

  242. Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. John Wiley and Sons Ltd, Chichester

    Google Scholar 

  243. Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143 doi:10.1088/0953-8984/4/5/001

    CAS  Google Scholar 

  244. Otto A (2005) J Raman Spectrosc 36:497 doi:10.1002/jrs.1355

    CAS  Google Scholar 

  245. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) J Phys Condens Matter 14:R597 doi:10.1088/0953-8984/14/18/202

    CAS  Google Scholar 

  246. Alexander TA, Pellegrino PM, Gillespie JB (2004) Near-infrared surface-enhanced Raman scattering (SERS) mediated discrimination of single, optically trapped, bacterial spores. Smart Medical and Biomedical Sensor Technology, Bellingham

    Google Scholar 

  247. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) J Phys Chem B 109:312 doi:10.1021/jp040442n

    CAS  Google Scholar 

  248. Ji XH, Xu SP, Wang LY, Liu M, Pan K, Yuan H, Ma L, Xu WQ, Li JH, Bai YB, Li TJ (2005) Colloids Surf A Physicochem Eng Asp 257–58:171

    Google Scholar 

  249. Kneipp J, Kneipp H, Kneipp K (2006) Proc Natl Acad Sci U S A 103:17149 doi:10.1073/pnas.0608262103

    CAS  Google Scholar 

  250. Chithrani BD, Chan WCW (2007) Nano Lett 7:1542 doi:10.1021/nl070363y

    CAS  Google Scholar 

  251. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C et al (2002) Appl Spectrosc 56:150 doi:10.1366/0003702021954557

    CAS  Google Scholar 

  252. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Anal Chem 76:7064 doi:10.1021/ac049093j

    CAS  Google Scholar 

  253. Jensen RA, Sherin J, Emory SR (2007) Appl Spectrosc 61:832 doi:10.1366/000370207781540105

    CAS  Google Scholar 

  254. Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) Nano Lett 7:2819 doi:10.1021/nl071418z

    CAS  Google Scholar 

  255. Shamsaie A, Jonczyk M, Sturgis J, Robinson JP, Irudayaraj J (2007) J Biomed Opt 12:205021 doi:10.1117/1.2717549

    Google Scholar 

  256. Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH et al (2006) Nano Lett 6:1687 doi:10.1021/nl060865w

    CAS  Google Scholar 

  257. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C (in press)

  258. Olson TY, Schwartzberg AM, Orme CA, Talley CE, O’Connell B, Zhang JZ (2008) J Phys Chem C 112:6319 doi:10.1021/jp7116714

    CAS  Google Scholar 

  259. Dieringer JA, Lettan RB, Scheidt KA, Van Duyne RP (2007) J Am Chem Soc 129:16249 doi:10.1021/ja077243c

    CAS  Google Scholar 

  260. Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N et al (2004) Technol Cancer Res Treat 3:33

    CAS  Google Scholar 

  261. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) J Am Chem Soc 128:2115 doi:10.1021/ja057254a

    CAS  Google Scholar 

  262. El-Sayed IH, Huang XH, El-Sayed MA (2006) Cancer Lett 239:129 doi:10.1016/j.canlet.2005.07.035

    CAS  Google Scholar 

  263. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2007) Nanomedicine 2:681 doi:10.2217/17435889.2.5.681

    CAS  Google Scholar 

  264. Oyelere AK, Chen PC, Huang XH, El-Sayed IH, El-Sayed MA (2007) Bioconjug Chem 18:1490 doi:10.1021/bc070132i

    CAS  Google Scholar 

  265. Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Plasmonics 2:107 doi:10.1007/s11468-007-9031-1

    CAS  Google Scholar 

  266. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM et al (2008) Mol Cancer Ther 7:1730 doi:10.1158/1535-7163.MCT-08-0016

    CAS  Google Scholar 

Download references

Acknowledgements

JZZ is grateful to the US National Science Foundation, US Department of Defense, and UARC for financial support. CN thanks partial financial support by CONACyT-México under grant No. 48521, DGAPA-UNAM under grant No. IN106408, and DGSCA-UNAM for computer resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.Z., Noguez, C. Plasmonic Optical Properties and Applications of Metal Nanostructures. Plasmonics 3, 127–150 (2008). https://doi.org/10.1007/s11468-008-9066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-008-9066-y

Keywords

Navigation