Skip to main content
Log in

Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Interface engineering in atomically thin transition metal dichalcogenides (TMDs) is becoming an important and powerful technique to alter their properties, enabling new optoelectronic applications and quantum devices. Interface engineering in a monolayer WSe2 sample via introduction of high-density edges of standing structured graphene nanosheets (GNs) is realized. A strong photoluminescence (PL) emission peak from intravalley and intervalley trions at about 750 nm is observed at the room temperature, which indicated the heavily p-type doping of the monolayer WSe2/thin graphene nanosheet-embedded carbon (TGNEC) film heterostructure. We also successfully triggered the emission of biexcitons (excited state biexciton) in a monolayer WSe2, via the electron trapping centers of edge quantum wells of a TGNEC film. The PL emission of a monolayer WSe2/GNEC film is quenched by capturing the photoexcited electrons to reduce the electron-hole recombination rate. This study can be an important benchmark for the extensive understanding of light—matter interaction in TMDs, and their dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)

    Article  ADS  Google Scholar 

  3. J. W. You, S. R. Bongu, Q. Bao, and N. C. Panoiu, Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects, Nanophoton. 8, 63 (2018)

    Article  Google Scholar 

  4. D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y. W. Zhang, Y. Zhou, and Y. Zhu, A review on mechanics and mechanical properties of 2D materials — Graphene and beyond, Extreme Mech. Lett. 13, 42 (2017)

    Article  Google Scholar 

  5. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions, Nat. Nanotech. 9(12), 1024 (2014)

    Article  ADS  Google Scholar 

  6. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotech. 7(8), 490 (2012)

    Article  ADS  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nature Nanotechno. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  8. S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)

    Article  Google Scholar 

  9. K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photon. 10(4), 216 (2016)

    Article  ADS  Google Scholar 

  10. R. Yang, J. Fan, and M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties, Front. Phys. 17(4), 43202 (2022)

    Article  ADS  Google Scholar 

  11. M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, and J. He, Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies, Front. Phys. 17(6), 63601 (2022)

    Article  ADS  Google Scholar 

  12. Y. Han, J. Yuan, Y. Zhu, Q. Wang, L. Li, and M. Cao, Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption, J. Colloid Interface Sci. 609, 746 (2022)

    Article  ADS  Google Scholar 

  13. A. Xie, M. X. Sun, K. Zhang, W. C. Jiang, F. Wu, and M. He, In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: Interfacial enhancement of absorbing performance against electromagnetic pollution, Phys. Chem. Chem. Phys. 18(36), 24931 (2016)

    Article  Google Scholar 

  14. J. Yang, J. Wang, H. Li, Z. Wu, Y. Xing, Y. Chen, and L. Liu, MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption, Adv. Sci. (Weinh) 9(7), e2101988 (2022)

    Article  Google Scholar 

  15. Q. Q. Wang, B. Niu, Y. H. Han, Q. Zheng, L. Li, and M. S. Cao, Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device, Chem. Eng. J 452, 139042 (2023)

    Article  Google Scholar 

  16. M. Tosun, L. Chan, M. Amani, T. Roy, G. H. Ahn, P. Taheri, C. Carraro, J. W. Ager, R. Maboudian, and A. Javey, Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment, ACS Nano 10(7), 6853 (2016)

    Article  Google Scholar 

  17. C. B. Qin, X. L. Liang, S. P. Han, G. F. Zhang, R. Y. Chen, J. Y. Hu, L. T. Xiao, and S. T. Jia, Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation, Front. Phys. 16(1), 12501 (2020)

    Article  ADS  Google Scholar 

  18. Y. Liu, Y. Zhou, H. Zhang, F. Ran, W. Zhao, L. Wang, C. Pei, J. Zhang, X. Huang, and H. Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy, Front. Phys. 14(1), 13607 (2019)

    Article  ADS  Google Scholar 

  19. B. Wen, Y. Zhu, D. Yudistira, A. Boes, L. L. Zhang, T. Yidirim, B. Q. Liu, H. Yan, X. Q. Sun, Y. Zhou, Y. Z. Xue, Y. P. Zhang, L. Fu, A. Mitchell, H. Zhang, and Y. Lu, Ferroelectric-driven exciton and trion modulation in monolayer molybdenum and tungsten diselenides, ACS Nano 13(5), 5335 (2019)

    Article  Google Scholar 

  20. S. Imani Yengejeh, W. Wen, and Y. Wang, Mechanical properties of lateral transition metal dichalcogenide heterostructures, Front. Phys. 16(1), 13502 (2020)

    Article  ADS  Google Scholar 

  21. Y. Yang, Z. W. Jie, Z. W. Ying, L. Xian, J. Z. Ming, L. W. Min, and M. G. Hong, Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer, Acta Phys. Sin. 68(1), 017201 (2019) (in Chinese)

    Article  Google Scholar 

  22. V. Shahnazaryan, I. Iorsh, I. A. Shelykh, and O. Kyriienko, Exciton-exciton interaction in transition-metal dichalcogenide monolayers, Phys. Rev. B 96(11), 115409 (2017)

    Article  ADS  Google Scholar 

  23. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)

    Article  ADS  Google Scholar 

  24. Z. P. Li, T. M. Wang, Z. G. Lu, C. H. Jin, Y. W. Chen, Y. Z. Meng, Z. Lian, T. Taniguchi, K. Watanabe, S. Zhang, D. Smirnov, and S.-F. Shi, Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2, Nat. Commun. 9(1), 3719 (2018)

    Article  ADS  Google Scholar 

  25. E. J. Sie, A. J. Frenzel, Y.-H. Lee, J. Kong, and N. Gedik, Intervalley biexcitons and many-body effects in monolayer MoS2, Phys. Rev. B 92(12), 125417 (2015)

    Article  ADS  Google Scholar 

  26. K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, and G. Moody, Neutral and charged intervalley biexcitons in monolayer MoSe2, Nat. Commun. 8(1), 15552 (2017)

    Article  ADS  Google Scholar 

  27. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Electrical control of neutral and charged excitons in a monolayer semiconductor, Nat. Commun. 4, 1474 (2013)

    Article  ADS  Google Scholar 

  28. A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B 86(11), 115409 (2012)

    Article  ADS  Google Scholar 

  29. R. C. Miller, D. A. Kleinman, W. T. Tsang, and A. C. Gossard, Observation of the excited level of excitons in GaAs quantum wells, Phys. Rev. B 24(2), 1134 (1981)

    Article  ADS  Google Scholar 

  30. R. L. Greene, K. K. Bajaj, and D. E. Phelps, Energy levels of Wannier excitons in GaAs—Ga1−xAlxAs quantum-well structures, Phys. Rev. B 29(4), 1807 (1984)

    Article  ADS  Google Scholar 

  31. K. L. He, N. Kumar, L. Zhao, Z. F. Wang, K. F. Mak, H. Zhao, and J. Shan, Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett. 113(2), 026803 (2014)

    Article  ADS  Google Scholar 

  32. H. Q. Ying and X. Yang, Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application, Acta Phys. Sin. 71(12), 127102 (2022) (in Chinese)

    Article  Google Scholar 

  33. C. Wang, X. Zhang, and D. Diao, Nanosized graphene crystallite induced strong magnetism in pure carbon films, Nanoscale 7(10), 4475 (2015)

    Article  ADS  Google Scholar 

  34. W. C. Chen, X. Zhang, and D. F. Diao, Low-energy electron excitation effect on formation of graphene nanocrystallites during carbon film growth process, Appl. Phys. Lett. 111, 114105 (2017)

    Article  ADS  Google Scholar 

  35. X. Zhang, Z. Lin, D. Peng, and D. Diao, Bias-modulated high photoelectric response of graphene-nanocrystallite embedded carbon film coated on n-silicon, Nanomaterials 9(3) (2019)

  36. S. Devaraj and N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112(11), 4406 (2008)

    Article  Google Scholar 

  37. S. J. Yoo, C. Y. Kim, J. W. Shin, S. G. Lee, J. M. Jeong, Y. J. Kim, S. H. Lee, and J. G. Kim, Characterization of an amorphous carbon film covering a Mo grid during in situ heating TEM study, Mater. Charact. 78, 31 (2013)

    Article  Google Scholar 

  38. S. Y. Gao, L. Liu, Z. Z. Lin, X. Zhang, and D. F. Diao, High photoresponsivity of vertical graphene nanosheets/P-Si enhanced by electron trapping at edge quantum wells, J. Phys. Chem. C 125(9), 5392 (2021)

    Article  Google Scholar 

  39. M. D. Tran, J. H. Kim, and Y. H. Lee, Tailoring photoluminescence of monolayer transition metal dichalcogenides, Curr. Appl. Phys. 16(9), 1159 (2016)

    Article  ADS  Google Scholar 

  40. J. Yang, T. Y. Lü, Y. W. Myint, J. J. Pei, D. Macdonald, J. C. Zheng, and Y. R. Lu, Robust excitons and trions in monolayer MoTe2, ACS Nano 9(6), 6603 (2015)

    Article  Google Scholar 

  41. B. Zhu, X. Chen, and X. Cui, Exciton binding energy of monolayer WS2, Sci. Rep. 5, 9218 (2015)

    Article  ADS  Google Scholar 

  42. Z. Z. Yan, Z. H. Jiang, J. P. Lu, and Z. H. Ni, Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure, Front. Phys. 13(4), 138115 (2018)

    Article  ADS  Google Scholar 

  43. J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lü, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, Excited state biexcitons in atomically thin MoSe2, ACS Nano 11(7), 7468 (2017)

    Article  Google Scholar 

  44. Y. M. You, X. X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer WSe2, Nat. Phys. 11(6), 477 (2015)

    Article  Google Scholar 

  45. J. Z. Shang, X. N. Shen, C. X. Cong, N. Peimyoo, B. C. Cao, M. Eginligil, and T. Yu, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor, ACS Nano 9(1), 647 (2015)

    Article  Google Scholar 

  46. M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald, and H. T. Nguyen, Mechanisms and applications of steady-state photoluminescence spectroscopy in two-dimensional transition-metal dichalcogenides, ACS Nano 14(11), 14579 (2020)

    Article  Google Scholar 

  47. A. T. Hanbicki, G. Kioseoglou, M. Currie, C. S. Hellberg, K. M. McCreary, A. L. Friedman, and B. T. Jonker, Anomalous temperature-dependent spin-valley polarization in monolayer WS2, Sci. Rep. 6, 18885 (2016)

    Article  ADS  Google Scholar 

  48. J. M. Li, X. Yuan, P. T. Jing, J. Li, M. B. Wei, J. Hua, J. L. Zhao, and L. H. Tian, Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films, RSC Adv. 6(82), 78311 (2016)

    Article  ADS  Google Scholar 

  49. T. Kato and T. Kaneko, Optical detection of a highly localized impurity state in monolayer tungsten disulfide, ACS Nano 8(12), 12777 (2014)

    Article  Google Scholar 

  50. Z. W. Wang, R. Z. Li, X. Y. Dong, Y. Xiao, and Z. Q. Li, Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides, Front. Phys. 13(4), 137305 (2018)

    Article  ADS  Google Scholar 

  51. A. Sharma, B. Wen, B. Q. Liu, Y. W. Myint, H. Zhang, and Y. Lu, Defect engineering in few-layer phosphorene, Small 14(16), 1704556 (2018)

    Article  Google Scholar 

  52. A. M. Jones, H. Y. Yu, N. J. Ghimire, S. F. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Q. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. D. Xu, Optical generation of excitonic valley coherence in monolayer WSe2, Nat. Nanotech. 8(9), 634 (2013)

    Article  ADS  Google Scholar 

  53. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2, Phys. Rev. B 90(7), 075413 (2014)

    Article  ADS  Google Scholar 

  54. D. K. Zhang, D. W. Kidd, and K. Varga, Excited biexcitons in transition metal dichalcogenides, Nano Lett. 15(10), 7002 (2015)

    Article  ADS  Google Scholar 

  55. Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, and T. F. Heinz, Observation of biexcitons in monolayer WSe2, Nat. Phys. 11(6), 477 (2015)

    Article  Google Scholar 

  56. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances, Phys. Rev. Lett. 114(9), 097403 (2015)

    Article  ADS  Google Scholar 

  57. C. F. Klingshirn, Semiconductor Optics, Ed. 3, Springer-Verlag Berlin, Heidelberg, 2007 doi: https://doi.org/10.1007/978-3-540-38347-5

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 62104155, 52275565, 52005343, and 62204117) of China, the Natural Science Foundation of Guangdong Province (No. 2022A1515011667), and the financial support from Jiangsu Province Science Foundation for Youths (No. BK20210275), and Guangdong Kangyi Special Fund (No. 2020KZDZX1173). The authors wish to acknowledge the assistance on TEM/FIB received from the Electron Microscope Center of the Shenzhen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Zhang.

Electronic supplementary material

11467_2022_1232_MOESM1_ESM.pdf

Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, B., Luo, DN., Zhang, LL. et al. Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges. Front. Phys. 18, 33306 (2023). https://doi.org/10.1007/s11467-022-1232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1232-8

Keywords

Navigation