Skip to main content
Log in

Quantum control with Lyapunov function and bang-bang solution in the optomechanics system

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang-bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)

    Article  ADS  Google Scholar 

  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  3. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)

    Article  ADS  Google Scholar 

  4. Y. C. Liu, Y. F. Xiao, X. S. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606 (2013)

    Article  ADS  Google Scholar 

  5. X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602 (2015)

    Article  ADS  Google Scholar 

  6. A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, Mechanical squeezing via parametric amplification and weak measurement, Phys. Rev. Lett. 107(21), 213603 (2011)

    Article  ADS  Google Scholar 

  7. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, Cavity-assisted squeezing of a mechanical oscillator, Phys. Rev. A 79(6), 063819 (2009)

    Article  ADS  Google Scholar 

  8. M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A 89(2), 023849 (2014)

    Article  ADS  Google Scholar 

  9. X. L. Huang, T. Wang, and X. X. Yi, Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E 86(5), 051105 (2012)

    Article  ADS  Google Scholar 

  10. L. Tian and H. L. Wang, Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806 (2010)

    Article  ADS  Google Scholar 

  11. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A 77(3), 033804 (2008)

    Article  ADS  Google Scholar 

  12. A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806 (2010)

    Article  ADS  Google Scholar 

  13. S. Mancini, D. Vitali, and P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback, Phys. Rev. Lett. 80(4), 688 (1998)

    Article  ADS  Google Scholar 

  14. R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P. L. Yu, K. W. Lehnert, and C. A. Regal, Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett. 116(6), 063601 (2016)

    Article  ADS  Google Scholar 

  15. J. Y. Yang, D. Y. Wang, C. H. Bai, S. Y. Guan, X. Y. Gao, A. D. Zhu, and H. F. Wang, Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities, Opt. Express 27(16), 22855 (2019)

    Article  ADS  Google Scholar 

  16. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)

    Article  ADS  Google Scholar 

  17. A. H. Safavi-Naeini and O. Painter, Proposal for an optomechanical traveling wave phonon-photon translator, New J. Phys. 13(1), 013017 (2011)

    Article  ADS  Google Scholar 

  18. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603 (2012)

    Article  ADS  Google Scholar 

  19. M. Tsang, Cavity quantum electro-optics (II): Input-output relations between traveling optical and microwave fields, Phys. Rev. A 84(4), 043845 (2011)

    Article  ADS  Google Scholar 

  20. X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325 (2013)

    Article  ADS  Google Scholar 

  21. X. W. Xu, Y. X. Liu, C. P. Sun, and Y. Li, Mechanical PT symmetry in coupled optomechanical systems, Phys. Rev. A 92(1), 013852 (2015)

    Article  ADS  Google Scholar 

  22. Y. D. Wang and A. A. Clerk, Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601 (2013)

    Article  ADS  Google Scholar 

  23. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601 (2011)

    Article  ADS  Google Scholar 

  24. Y. D. Wang and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603 (2012)

    Article  ADS  Google Scholar 

  25. S. S. U and A. Narayanan, Mechanical switch for state transfer in dual-cavity optomechanical systems., Phys. Rev. A 88(3), 033802 (2013)

    Article  ADS  Google Scholar 

  26. K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics, Phys. Today 58(7), 36 (2005)

    Article  Google Scholar 

  27. T. Kippenberg and K. Vahala, Cavity opto-mechanics, Opt. Express 15(25), 17172 (2007)

    Article  ADS  Google Scholar 

  28. V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. L. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601 (2011)

    Article  ADS  Google Scholar 

  29. Y. D. Wang and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603 (2012)

    Article  ADS  Google Scholar 

  30. S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109(13), 130503 (2012)

    Article  ADS  Google Scholar 

  31. H. K. Li, X. X. Ren, Y. C. Liu, and Y. F. Xiao, Photonphoton interactions in a largely detuned optomechanical cavity, Phys. Rev. A 88(5), 053850 (2013)

    Article  ADS  Google Scholar 

  32. M. D. La Haye, O. Buu, B. Camarota, and K. C. Schwab, Approaching the quantum limit of a nanomechanical resonator, Science 304(5667), 74 (2004)

    Article  ADS  Google Scholar 

  33. J. J. Li and K. D. Zhu, All-optical mass sensing with coupled mechanical resonator systems, Phys. Rep. 525(3), 223 (2013)

    Article  ADS  Google Scholar 

  34. B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D. Bouwmeester, Optomechanical superpositions via nested interferometry, Phys. Rev. Lett. 109(2), 023601 (2012)

    Article  ADS  Google Scholar 

  35. P. Sekatski, M. Aspelmeyer, and N. Sangouard, Macroscopic optomechanics from displaced single-photon entanglement, Phys. Rev. Lett. 112(8), 080502 (2014)

    Article  ADS  Google Scholar 

  36. A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Timeoptimal quantum evolution, Phys. Rev. Lett. 96(6), 060503 (2006)

    Article  ADS  Google Scholar 

  37. N. Khaneja, R. Brockett, and S. J. Glaser, Time optimal control in spin systems, Phys. Rev. A 63(3), 032308 (2001)

    Article  ADS  Google Scholar 

  38. P. D’Alessandro and E. De Santis, Controlled invariance and feedback laws, IE EE Trans. Automat. Contr. 46(7), 1141 (2001)

    Article  MATH  Google Scholar 

  39. J. P. Palao and R. Kosloff, Quantum computing by an optimal control algorithm for unitary transformations, Phys. Rev. Lett. 89(18), 188301 (2002)

    Article  ADS  Google Scholar 

  40. M. Mirrahimi, P. Rouchon, and G. Turinici, Lyapunov control of bilinear Schrödinger equations, Automatica 41, 1987 (2005)

    Article  MATH  Google Scholar 

  41. X. T. Wang and S. G. Schirmer, Entanglement generation between distant atoms by Lyapunov control, Phys. Rev. A 80(4), 042305 (2009)

    Article  ADS  Google Scholar 

  42. W. Wang, L. C. Wang, and X. X. Yi, Lyapunov control on quantum open systems in decoherence-free subspaces, Phys. Rev. A 82(3), 034308 (2010)

    Article  ADS  Google Scholar 

  43. Y. H. Chen, W. Qin, and F. Nori, Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100(1), 012339 (2019)

    Article  ADS  Google Scholar 

  44. C. H. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Optomechanical dark mode, Science 338(6114), 1609 (2012)

    Article  ADS  Google Scholar 

  45. D. Garg, A. K. Chauhan, and A. Biswas, Adiabatic transfer of energy fluctuations between membranes inside an optical cavity, Phys. Rev. A 96(2), 023837 (2017)

    Article  ADS  Google Scholar 

  46. Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841 (2018)

    Article  ADS  Google Scholar 

  47. Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Deterministic conversions between Greenberger-Horne-Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering, Phys. Rev. A 100(1), 012332 (2019)

    Article  ADS  Google Scholar 

  48. Y. H. Kang and Y. Xia, Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IE EE J. Sel. Top. Quantum Electron. 26(3), 6700107 (2020)

    Google Scholar 

  49. Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322 (2020)

    Article  ADS  Google Scholar 

  50. Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, One-step implementation of N-qubit nona-diabatic holonomic quantum gates with superconducting qubits via inverse hamiltonian engineering, Ann. Phys. 531(7), 1800427 (2019)

    Article  Google Scholar 

  51. Y. Wang, C. S. Hu, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Accelerated and noise-resistant protocol of dissipation-based Knill-Laflamme-Milburn state generation with Lyapunov control, Ann. Phys. 531(7), 1900006 (2019)

    Article  Google Scholar 

  52. Y. H. Zhou, H. Z. Shen, and X. X. Yi, Unconventional photon blockade with second-order nonlinearity, Phys. Rev. A 92(2), 023838 (2015)

    Article  ADS  Google Scholar 

  53. Z. C. Zhang, J. C. Pei, Y. P. Wang, and X. G. Wang, Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys. 16(3), 32503 (2021)

    Article  ADS  Google Scholar 

  54. X. B. Yan, H. L. Lu, F. Gao, F. Gao, and L. Yang, Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601 (2019)

    Article  ADS  Google Scholar 

  55. M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601 (2019)

    Article  ADS  Google Scholar 

  56. J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601 (2019)

    Article  ADS  Google Scholar 

  57. S. Liu, J. H. Shen, R. H. Zheng, Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17(2), 21502 (2022)

    Article  ADS  Google Scholar 

  58. Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617 (2020)

    Article  ADS  Google Scholar 

  59. Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Effective discrimination of chiral molecules in a cavity, Opt. Lett. 45(17), 4952 (2020)

    Article  ADS  Google Scholar 

  60. D. D’Alessandro, Introduction to Quantum Control and Dynamics, Taylor and Francis Group, Boca Raton, 2007

    Book  MATH  Google Scholar 

  61. Z. C. Shi, X. L. Zhao, and X. X. Yi, Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control, Phys. Rev. A 91(3), 032301 (2015)

    Article  ADS  Google Scholar 

  62. X. X. Yi, X. L. Huang, C. F. Wu, and C. H. Oh, Driving quantum systems into decoherence-free subspaces by Lyapunov control, Phys. Rev. A 80(5), 052316 (2009)

    Article  ADS  Google Scholar 

  63. S. C. Hou, M. A. Khan, X. X. Yi, D. Dong, and I. R. Petersen, Optimal Lyapunov-based quantum control for quantum systems, Phys. Rev. A 86(2), 022321 (2012)

    Article  ADS  Google Scholar 

  64. J. T. Sheng, X. R. Wei, C. Yang, and H. B. Wu, Self-organized synchronization of phonon lasers, Phys. Rev. Lett. 124(5), 053604 (2020)

    Article  ADS  Google Scholar 

  65. W. W. Zhou, S. G. Schirmer, M. Zhang, and H. Y. Dai, Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimal time — energy control, J. Phys. A Math. Theor. 44(10), 105303 (2011)

    Article  ADS  MATH  Google Scholar 

  66. X. T. Wang, S. Vinjanampathy, F. W. Strauch, and K. Jacobs, Ultraefficient cooling of resonators: Beating sideband cooling with quantum control, Phys. Rev. Lett. 107(17), 177204 (2011)

    Article  ADS  Google Scholar 

  67. L. Tian, Ground state cooling of a nanomechanical resonator via parametric linear coupling, Phys. Rev. B 79(19), 193407 (2009)

    Article  ADS  Google Scholar 

  68. K. Nishio, K. Kashima, and J. Imura, Effects of time delay in feedback control of linear quantum systems, Phys. Rev. A 79(6), 062105 (2009)

    Article  ADS  Google Scholar 

  69. X. X. Yi, S. L. Wu, C. Wu, X. L. Feng, and C. H. Oh, Time-delay effects and simplified control fields in quantum Lyapunov control, J. Phys. At. Mol. Opt. Phys. 44(19), 195503 (2011)

    Article  ADS  Google Scholar 

  70. D. Stefanatos, J. Ruths, and J. S. Li, Frictionless atom cooling in harmonic traps: A time-optimal approach, Phys. Rev. A 82(6), 063422 (2010)

    Article  ADS  Google Scholar 

  71. X. J. Lu, X. Chen, J. Alonso, and J. G. Muga, Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control, Phys. Rev. A 89(2), 023627 (2014)

    Article  ADS  Google Scholar 

  72. M. Palmero, E. Torrontegui, D. Guéry-Odelin, and J. G. Muga, Fast transport of two ions in an anharmonic trap, Phys. Rev. A 88(5), 053423 (2013)

    Article  ADS  Google Scholar 

  73. M. Palmero, R. Bowler, J. P. Gaebler, D. Leibfried, and J. G. Muga, Fast transport of mixed-species ion chains within a Paul trap, Phys. Rev. A 90(5), 053408 (2014)

    Article  ADS  Google Scholar 

  74. Y. C. Ding, T. Y. Huang, K. Paul, M. J. Hao, and X. Chen, Smooth bang-bang shortcuts to adiabaticity for atomic transport in a moving harmonic trap, Phys. Rev. A 101(6), 063410 (2020)

    Article  ADS  Google Scholar 

  75. S. Balasubramanian, S. Y. Han, B. T. Yoshimura, and J. K. Freericks, Bang-bang shortcut to adiabaticity in trapped-ion quantum simulators, Phys. Rev. A 97(2), 022313 (2018)

    Article  ADS  Google Scholar 

  76. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)

    Article  ADS  Google Scholar 

  77. C. S. Hu, Z. Q. Liu, Y. Liu, L. T. Shen, H. Z. Wu, and S. B. Zheng, Entanglement beating in a cavity optomechanical system under two-field driving, Phys. Rev. A 101(3), 033810 (2020)

    Article  ADS  Google Scholar 

  78. G. De Chiara, M. Paternostro, and G. M. Palma, Entanglement detection in hybrid optomechanical systems, Phys. Rev. A 83(5), 052324 (2011)

    Article  ADS  Google Scholar 

  79. L. Tian and H. L. Wang, Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045, 11874114, and 11674060, the Natural Science Funds for Distinguished Young Scholar of Fujian Province under Grant No. 2020J06011, Project from Fuzhou University under Grant JG2020012, the Natural Science Foundation of Fujian Province under Grant No. 2018J01414, and the China Postdoctoral Science Foundation under Grant No. 2021M691150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1119-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kang, YH., Hu, CS. et al. Quantum control with Lyapunov function and bang-bang solution in the optomechanics system. Front. Phys. 17, 32501 (2022). https://doi.org/10.1007/s11467-021-1119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1119-0

Keywords

Navigation