Skip to main content
Log in

Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We develop a method for creating two- and one-dimensional (2D and 1D) self-trapped modes in binary spin-orbit-coupled Bose–Einstein condensates with the contact repulsive interaction, whose local strength grows sufficiently rapidly from the center to the periphery. In particular, an exact semi-vortex (SV) solution is found for the anti-Gaussian radial modulation profile. The exact modes are included in the numerically produced family of SV solitons. Other families, in the form of mixed modes (MMs), as well as excited states of SVs and MMs, are also produced. Although the excited states are unstable in all previously studied models, they are partially stable in the present one. In the 1D version of the system, exact solutions for the counterpart of SVs, namely, semi-dipole solitons, are also found. Families of semi-dipoles, as well as the 1D version of MMs, are produced numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5᾿), 259 (1998)

    ADS  MathSciNet  Google Scholar 

  2. G. Fibich and G. Papanicolaou, Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension, SIAM J. Appl. Math. 60(1), 183 (1999)

    MATH  Google Scholar 

  3. A. S. Desyatnikov, L. Torner, and Y. S. Kivshar, Optical vortices and vortex solitons, Prog. Opt. 47, 291 (2005)

    ADS  Google Scholar 

  4. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, Spatiotemporal optical solitons, J. Optics B: Quant. Semicl. Opt. 7(5), R53 (2005)

    ADS  Google Scholar 

  5. B. Malomed, L. Torner, F. Wise, and D. Mihalache, Viewpoint: On multidimensional solitons and their legacy in contemporary Atomic, Molecular and Optical physics, J. Phys.: At. Mol. Opt. Phys. 49(17), 170502 (2016)

    ADS  Google Scholar 

  6. D. Mihalache, Multidimensional localized structures in optics and Bose–Einstein condensates: A selection of recent studies, Rom. J. Phys. 59, 295 (2014)

    Google Scholar 

  7. B. A. Malomed, Multidimensional solitons: Wellestablished results and novel findings, Eur. Phys. J. Spec. Top. 225(13᾿4), 2507 (2016)

    Google Scholar 

  8. V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, and D. Mihalache, Bose–Einstein condensation: Twenty years after, Rom. Rep. Phys. 67, 5 (2015)

    Google Scholar 

  9. D. Mihalache, Multidimensional localized structures in optical and matter-wave media: A topical survey of recent literature, Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  10. J. Zeng and B. A. Malomed, Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. E 95, 052214 (2017)

    ADS  MathSciNet  Google Scholar 

  11. X. Gao and J. Zeng, Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices, Front. Phys. 13(1), 130501 (2018)

    Google Scholar 

  12. O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner, Algebraic bright and vortex solitons in defocusing media, Opt. Lett. 36(16), 3088 (2011)

    ADS  Google Scholar 

  13. O. V. Borovkova, Y. V. Kartashov, L. Torner, and B. A. Malomed, Bright solitons from defocusing nonlinearities, Phys. Rev. E 84, 035602(R) (2011)

    ADS  Google Scholar 

  14. Y. V. Kartashov, V. A. Vysloukh, L. Torner, and B. A. Malomed, Self-trapping and splitting of bright vector solitons under inhomogeneous defocusing nonlinearities, Opt. Lett. 36(23), 4587 (2011)

    ADS  Google Scholar 

  15. V. E. Lobanov, O. V. Borovkova, Y. V. Kartashov, B. A. Malomed, and L. Torner, Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity, Opt. Lett. 37(11), 1799 (2012)

    ADS  Google Scholar 

  16. Q. Tian, L. Wu, Y. Zhang, and J. F. Zhang, Vortex solitons in defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. E 85(5), 056603 (2012)

    ADS  Google Scholar 

  17. Y. Wu, Q. Xie, H. Zhong, L. Wen, and W. Hai, Algebraic bright and vortex solitons in self-defocusing media with spatially inhomogeneous nonlinearity, Phys. Rev. A 87(5), 055801 (2013)

    ADS  Google Scholar 

  18. R. Driben, Y. V. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Soliton gyroscopes in media with spatially growing repulsive nonlinearity, Phys. Rev. Lett. 112(2), 020404 (2014)

    ADS  Google Scholar 

  19. Y. V. Kartashov, B. A. Malomed, Y. Shnir, and L. Torner, Twisted toroidal vortex-solitons in inhomogeneous media with repulsive nonlinearity, Phys. Rev. Lett. 113(26), 264101 (2014)

    ADS  Google Scholar 

  20. R. Driben, Y. Kartashov, B. A. Malomed, T. Meier, and L. Torner, Three-dimensional hybrid vortex solitons, New J. Phys. 16(6), 063035 (2014)

    ADS  MathSciNet  Google Scholar 

  21. J. Hukriede, D. Runde, and D. Kip, Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides, J. Phys. D 36(3), R1 (2003)

    ADS  Google Scholar 

  22. G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Inguscio, and G. Modugno, 39K Bose–Einstein condensate with tunable interactions, Phys. Rev. Lett. 99(1), 010403 (2007)

    ADS  Google Scholar 

  23. S. E. Pollack, D. Dries, M. Junker, Y. P. Chen, T. A. Corcovilos, and R. G. Hulet, Extreme tunability of interactions in a 7Li Bose–Einstein condensate, Phys. Rev. Lett. 102(9), 090402 (2009)

    ADS  Google Scholar 

  24. F. K. Abdullaev, A. Gammal, and L. Tomio, Dynamics of bright matter-wave solitons in a Bose–Einstein condensate with inhomogeneous scattering length, J. Phys.: At. Mol. Opt. Phys. 37(3), 635 (2004)

    ADS  Google Scholar 

  25. L. W. Clark, L. C. Ha, C. Y. Xu, and C. Chin, Quantum dynamics with spatiotemporal control of interactions in a stable Bose–Einstein condensate, Phys. Rev. Lett. 115(15), 155301 (2015)

    ADS  Google Scholar 

  26. R. Yamazaki, S. Taie, S. Sugawa, and Y. Takahashi, Quantum dynamics with spatiotemporal control of interactions in a stable Bose–Einstein condensate, Phys. Rev. Lett. 105, 050405 (2010)

    ADS  Google Scholar 

  27. M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, Controlling condensate collapse and expansion with an optical Feshbach resonance, Phys. Rev. Lett. 110(12), 123201 (2013)

    ADS  Google Scholar 

  28. D. M. Bauer, M. Lettner, C. Vo, G. Rempe, and S. Dürr, Control of a magnetic Feshbach resonance with laser light, Nat. Phys. 5(5), 339 (2009)

    Google Scholar 

  29. Y. Li, J. Liu, W. Pang, and B. A. Malomed, Matterwave solitons supported by field-induced dipole-dipole repulsion with spatially modulated strength, Phys. Rev. A 88(5), 053630 (2013)

    ADS  Google Scholar 

  30. F. Kh. Abdullaev, A. Gammal, B. A. Malomed, and L. Tomio, Bright solitons in Bose–Einstein condensates with fieldinduced dipole moments, J. Phys. B 47(7), 075301 (2014)

    ADS  Google Scholar 

  31. Y. Li, Z. Fan, Z. Luo, Y. Liu, H. He, J. Lü, J. Xie, C. Huang, and H. Tan, Cross-symmetry breaking of twocomponent discrete dipolar matter-wave solitons, Front. Phys. 12, 124206 (2017)

    Google Scholar 

  32. X. Chen, Y. Chuang, C. Lin, C. Wu, Y. Li, B. A. Malomed, and R. Lee, Magic tilt angle for stabilizing twodimensional solitons by dipole-dipole interactions, Phys. Rev. A 96, 043631 (2017)

    ADS  Google Scholar 

  33. Y. Li, W. Pang, J. Xu, C. Lee, B. A. Malomed, and L. Santos, Long-range transverse Ising model built with dipolar condensates in two-well arrays, New J. Phys. 19(1), 013030 (2017)

    ADS  Google Scholar 

  34. Y. J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Spin-orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)

    ADS  Google Scholar 

  35. D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms, Phys. Rev. A 84(2), 025602 (2011)

    ADS  Google Scholar 

  36. Y. Zhang, L. Mao, and C. Zhang, Mean-field dynamics of spin-orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 108(3), 035302 (2012)

    ADS  Google Scholar 

  37. V. Galitski and I. B. Spielman, Spin-orbit coupling in quantum gases, Nature 494(7435), 49 (2013)

    ADS  Google Scholar 

  38. H. Zhai, Degenerate quantum gases with spin-orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)

    ADS  MathSciNet  Google Scholar 

  39. Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-dimensional spin-orbit coupling for Bose–Einstein condensates, Science 354(6308), 83 (2016)

    ADS  Google Scholar 

  40. Z. Meng, L. Huang, P. Peng, D. Li, L. Chen, Y. Xu, C. Zhang, P. Wang, and J. Zhang, Experimental observation of a topological band gap opening in ultracold Fermi gases with two-dimensional spin-orbit coupling, Phys. Rev. Lett. 117(23), 235304 (2016)

    ADS  Google Scholar 

  41. Y. Zhang, M. E. Mossman, T. Busch, P. Engels, and C. Zhang, Properties of spin-orbit-coupled Bose–Einstein condensates, Front. Phys. 11(3), 118103 (2016)

    Google Scholar 

  42. C. Wang, C. Gao, C. M. Jian, and H. Zhai, Spin-orbit coupled spinor Bose–Einstein condensates, Phys. Rev. Lett. 105(16), 160403 (2010)

    ADS  Google Scholar 

  43. T. Kawakami, T. Mizushima, and K. Machida, Textures of F = 2 spinor Bose–Einstein condensates with spinorbit coupling, Phys. Rev. A 84(1), 011607 (2011)

    ADS  Google Scholar 

  44. B. Ramachandhran, B. Opanchuk, X. J. Liu, H. Pu, P. D. Drummond, and H. Hu, Half-quantum vortex state in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. A 85(2), 023606 (2012)

    ADS  Google Scholar 

  45. G. J. Conduit, Line of Dirac monopoles embedded in a Bose–Einstein condensate, Phys. Rev. A 86, 021605(R) (2012)

    ADS  Google Scholar 

  46. T. Kawakami, T. Mizushima, M. Nitta, and K. Machida, Stable skyrmions in SU(2) gauged Bose–Einstein condensates, Phys. Rev. Lett. 109(1), 015301 (2012)

    ADS  Google Scholar 

  47. V. Achilleos, D. J. Frantzeskakis, P. G. Kevrekidis, and D. E. Pelinovsky, Matter-wave bright solitons in spinorbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 110(26), 264101 (2013)

    ADS  Google Scholar 

  48. Y. V. Kartashov, V. V. Konotop, and F. Kh. Abdullaev, Gap solitons in a spin-orbit-coupled Bose–Einstein condensate, Phys. Rev. Lett. 111(6), 060402 (2013)

    ADS  Google Scholar 

  49. Y. Xu, Y. Zhang, and B. Wu, Bright solitons in spinorbit- coupled Bose–Einstein condensates, Phys. Rev. A 87(1), 013614 (2013)

    ADS  Google Scholar 

  50. H. Sakaguchi and B. Li, Vortex lattice solutions to the Gross–Pitaevskii equation with spin-orbit coupling in optical lattices, Phys. Rev. A 87(1), 015602 (2013)

    ADS  Google Scholar 

  51. D. A. Zezyulin, R. Driben, V. V. Konotop, and B. A. Malomed, Nonlinear modes in binary bosonic condensates with pseudo-spin-orbital coupling, Phys. Rev. A 88(1), 013607 (2013)

    ADS  Google Scholar 

  52. L. Salasnich and B. A. Malomed, Localized modes in dense repulsive and attractive Bose–Einstein condensates with spin-orbit and Rabi couplings, Phys. Rev. A 87(6), 063625 (2013)

    ADS  Google Scholar 

  53. Y. Cheng, G. Tang, and S. K. Adhikari, Localization of a spin-orbit-coupled Bose–Einstein condensate in a bichromatic optical lattice, Phys. Rev. A 89(6), 063602 (2014)

    ADS  Google Scholar 

  54. L. Salasnich, W. B. Cardoso, and B. A. Malomed, Localized modes in quasi-two-dimensional Bose–Einstein condensates with spin-orbit and Rabi couplings, Phys. Rev. A 90(3), 033629 (2014)

    ADS  Google Scholar 

  55. V. E. Lobanov, Y. V. Kartashov, and V. V. Konotop, Fundamental, multipole, and half-vortex gap solitons in spin-orbit coupled Bose–Einstein condensates, Phys. Rev. Lett. 112(18), 180403 (2014)

    Google Scholar 

  56. H. Sakaguchi and B. A. Malomed, Discrete and continuum composite solitons in Bose–Einstein condensates with the Rashba spin-orbit coupling in one and two dimensions, Phys. Rev. E 90(6), 062922 (2014)

    ADS  Google Scholar 

  57. S. Gautam and S. K. Adhikari, Vector solitons in a spinorbit- coupled spin-2 Bose–Einstein condensate, Phys. Rev. A 91(6), 063617 (2015)

    ADS  Google Scholar 

  58. Y. Zhang, Y. Xu, and T. Busch, Gap solitons in spinorbit- coupled Bose–Einstein condensates in optical lattices, Phys. Rev. A 91(4), 043629 (2015)

    ADS  Google Scholar 

  59. X. Zhu, H. Li, and Z. Shi, Defect matter-wave gap solitons in spin-orbit-coupled Bose–Einstein condensates in Zeeman lattices, Phys. Lett. A 380(40), 3253 (2016)

    ADS  Google Scholar 

  60. H. Lia, X. Zhua, and Z. Shi, Inverted solitons in a spinorbit- coupled Bose–Einstein condensate, Opt. Commun. 392, 214 (2017)

    ADS  Google Scholar 

  61. L. Wen, Q. Sun, Y. Chen, D.-S. Wang, J. Hu, H. Chen, W.-M. Liu, G. Juzeliūnas, B. A. Malomed, and A.-C. Ji, Motion of solitons in one-dimensional spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 94, 061602(R) (2016)

    ADS  Google Scholar 

  62. Y. Li and J. Xue, Stationary and moving solitons in spin-orbit-coupled spin-1 Bose–Einstein condensates, Front. Phys. 13(2), 130307 (2018)

    Google Scholar 

  63. G. Gligori, A. Maluckov, Lj. Hadzievski, S. Flach, and B. A. Malomed, Nonlinear localized flatband modes with spin-orbit coupling, Phys. Rev. B 94(14), 144302 (2016)

    ADS  Google Scholar 

  64. Y. V. Kartashov and V. V. Konotop, Solitons in Bose–Einstein condensates with helicoidal spin-orbit coupling, Phys. Rev. Lett. 118(19), 190401 (2017)

    ADS  Google Scholar 

  65. Y. Li, Y. Liu, Z. Fan, W. Pang, S. Fu, and B. A. Malomed, Two-dimensional dipolar gap solitons in free space with spin-orbit coupling, Phys. Rev. A 95(6), 063613 (2017)

    ADS  Google Scholar 

  66. H. Sakaguchi and B. A. Malomed, One- and twodimensional gap solitons in spin-orbit-coupled systems with Zeeman splitting, Phys. Rev. A 97(1), 013607 (2018)

    ADS  Google Scholar 

  67. J. Dias, M. Figueira, and V. V. Konotop, Coupled nonlinear Schrödinger equations with a gauge potential: Existence and blowup, Stud. Appl. Math. 136(3), 241 (2016)

    MathSciNet  MATH  Google Scholar 

  68. Sh. Mardonov, E. Ya. Sherman, J. Muga, H. W. Wang, Y. Ban, and X. Chen, Collapse of spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 91(4), 043604 (2015)

    ADS  Google Scholar 

  69. H. Sakaguchi, B. Li, and B. A. Malomed, Creation of two-dimensional composite solitons in spin-orbitcoupled selfattractive Bose–Einstein condensates in free space, Phys. Rev. E 89(3), 032920 (2014)

    ADS  Google Scholar 

  70. H. Sakaguchi, E. Ya. Sherman, and B. A. Malomed, Vortex solitons in two-dimensional spin-orbit coupled Bose–Einstein condensates: Effects of the Rashba–Dresselhaus coupling and the Zeeman splitting, Phys. Rev. E 94(3), 032202 (2016)

    ADS  MathSciNet  Google Scholar 

  71. G. Chen, Y. Liu, and H. Wang, Mixed-mode solitons in quadrupolar BECs with spin-orbit coupling, Commun. Nonlinear Sci. Numer. Simul. 48, 318 (2017)

    ADS  MathSciNet  Google Scholar 

  72. Y. V. Kartashov, B. A. Malomed, V. V. Konotop, V. E. Lobanov, and L. Torner, Stabilization of spatiotemporal solitons in Kerr media by dispersive coupling, Opt. Lett. 40(6), 1045 (2015)

    ADS  Google Scholar 

  73. C. E. Bardyn, T. Karzig, G. Refael, and T. C. H. Liew, Topological polaritons and excitons in garden-variety systems, Phys. Rev. B 91(16), 161413 (2015)

    ADS  Google Scholar 

  74. A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z topological insulator, Phys. Rev. Lett. 114(11), 116401 (2015)

    ADS  MathSciNet  Google Scholar 

  75. Y. V. Kartashov and D. V. Skryabin, Two-dimensional lattice solitons in polariton condensates with spin-orbit coupling, Opt. Lett. 41(21), 5043 (2016)

    ADS  Google Scholar 

  76. H. Sakaguchi, B. A. Malomed, and D. V. Skryabin, Spin-orbit coupling and nonlinear modes of the polariton condensate in a harmonic trap, New J. Phys. 19(8), 085003 (2017)

    ADS  Google Scholar 

  77. Y. C. Zhang, Z. W. Zhou, B. A. Malomed, and H. Pu, Stable solitons in three dimensional free space without the ground state: Self-trapped Bose–Einstein condensates with spin-orbit coupling, Phys. Rev. Lett. 115(25), 253902 (2015)

    ADS  Google Scholar 

  78. Y. Xu, Y. Zhang, and C. Zhang, Bright solitons in a twodimensional spin-orbit-coupled dipolar Bose–Einstein condensate, Phys. Rev. A 92(1), 013633 (2015)

    ADS  MathSciNet  Google Scholar 

  79. X. Jiang, Z. Fan, Z. Chen, W. Pang, Y. Li, and B. A. Malomed, Two-dimensional solitons in dipolar Bose–Einstein condensates with spin-orbit coupling, Phys. Rev. A 93(2), 023633 (2016)

    ADS  Google Scholar 

  80. B. Liao, S. Li, C. Huang, Z. Luo, W. Pang, H. Tan, B. A. Malomed, and Y. Li, Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting, Phys. Rev. A 96(4), 043613 (2017)

    ADS  Google Scholar 

  81. Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys. 17(33), 6039 (1984)

    ADS  Google Scholar 

  82. E. I. Rashba and E. Y. Sherman, Spin orbital band splitting in symmetric quantum wells, Phys. Lett. A 129(3), 175 (1988)

    ADS  Google Scholar 

  83. H. Sakaguchi and B. A. Malomed, Solitons in combined linear and nonlinear lattice potentials, Phys. Rev. A 81(1), 013624 (2010)

    ADS  Google Scholar 

  84. D. Kaup and B. Malomed, Soliton trapping and daughter waves in the Manakov model, Phys. Rev. A 48(1), 599 (1993)

    ADS  Google Scholar 

  85. Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)

    ADS  Google Scholar 

  86. C. Huang, Y. Ye, S. Liu, H. He, W. Pang, B. A. Malomed, and Y. Li, Excited states of two-dimensional solitons supported by spin-orbit coupling and field-induced dipole-dipole repulsion, Phys. Rev. A 97(1), 013636 (2018)

    ADS  Google Scholar 

  87. A. C. White, Y. Zhang, and T. Busch, Odd-petalnumber states and persistent flows in spin-orbit-coupled Bose–Einstein condensates, Phys. Rev. A 95, 041604(R) (2017)

    ADS  Google Scholar 

  88. X. Zhang, M. Kato, W. Han, S. Zhang, and H. Saito, Spin-orbit-coupled Bose–Einstein condensates held under a toroidal trap, Phys. Rev. A 95, 033620 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China through Grant Nos. 11575063, 61471123, and 61575041, the Joint Program in Physics of the NSF and the Binational (US-Israel) Science Foundation through Project No. 2015616, the Israel Science Foundation (project No. 1287/17), and the Natural Science Foundation of Guangdong Province through Grant No. 2015A030313639. B.A.M. is grateful for a foreign-expert grant from Guangdong province (China) and a Ding-Ying professorship provided by the South China Agricultural University (Guangzhou) at its College of Electronic Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Yao Li.

Additional information

arXiv: 1712.01430.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, RX., Chen, ZP., Huang, CQ. et al. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity. Front. Phys. 13, 130311 (2018). https://doi.org/10.1007/s11467-018-0778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0778-y

Keywords

Navigation