Skip to main content
Log in

An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Recent developments in the study of ultracold Rydberg gases demand an advanced level of experimental sophistication, in which high atomic and optical densities must be combined with excellent control of external fields and sensitive Rydberg atom detection. We describe a tailored experimental system used to produce and study Rydberg-interacting atoms excited from dense ultracold atomic gases. The experiment has been optimized for fast duty cycles using a high flux cold atom source and a three beam optical dipole trap. The latter enables tuning of the atomic density and temperature over several orders of magnitude, all the way to the Bose-Einstein condensation transition. An electrode structure surrounding the atoms allows for precise control over electric fields and single-particle sensitive field ionization detection of Rydberg atoms. We review two experiments which highlight the influence of strong Rydberg-Rydberg interactions on different many-body systems. First, the Rydberg blockade effect is used to pre-structure an atomic gas prior to its spontaneous evolution into an ultracold plasma. Second, hybrid states of photons and atoms called dark-state polaritons are studied. By looking at the statistical distribution of Rydberg excited atoms we reveal correlations between dark-state polaritons. These experiments will ultimately provide a deeper understanding of many-body phenomena in strongly-interacting regimes, including the study of strongly-coupled plasmas and interfaces between atoms and light at the quantum level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and notes

  1. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys., 2010, 82(3): 2313

    ADS  Google Scholar 

  2. D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, J. Opt. Soc. Am. B, 2010, 27(6): A208

    ADS  Google Scholar 

  3. J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms; Annual Review of Cold Atoms and Molecule chapter 8, Singapore: World Scientific, 2013: 301–350

    Google Scholar 

  4. F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade configuration, Phys. Rev. A, 2005, 72(6): 063403

    ADS  Google Scholar 

  5. H. Weimer, R. Löw, T. Pfau, and H. P. Büchler, Quantum critical behavior in strongly interacting Rydberg gases, Phys. Rev. Lett., 2008, 101(25): 250601

    ADS  Google Scholar 

  6. A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Imaging spatial correlations of Rydberg excitations in cold atom clouds, Phys. Rev. Lett., 2011, 107(10): 103001

    ADS  Google Scholar 

  7. P. Schau_, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of spatially ordered structures in a two-dimensional Rydberg gas, Nature, 2012, 491(7422): 87

    ADS  Google Scholar 

  8. C. Ates and I. Lesanovsky, Entropic enhancement of spatial correlations in a laser-driven Rydberg gas, Phys. Rev. A, 2012, 86(1): 013408

    ADS  Google Scholar 

  9. D. Petrosyan, M. Höning, and M. Fleischhauer, Spatial correlations of Rydberg excitations in optically driven atomic ensembles, Phys. Rev. A, 2013, 87(5): 053414

    ADS  Google Scholar 

  10. T. Pohl, E. Demler, and M. D. Lukin, Dynamical crystallization in the dipole blockade of ultracold atoms, Phys. Rev. Lett., 2010, 104(4): 043002

    ADS  Google Scholar 

  11. J. Schachenmayer, I. Lesanovsky, A. Micheli, and A. J. Daley, Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices, New J. Phys., 2010, 12(10): 103044

    ADS  Google Scholar 

  12. R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt, and S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped laser pulses, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184008

    ADS  Google Scholar 

  13. L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose-Einstein condensation in trapped dipolar gases, Phys. Rev. Lett., 2000, 85(9): 1791

    ADS  Google Scholar 

  14. G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky, and P. Zoller, Strongly correlated gases of Rydberg-dressed atoms: Quantum and classical dynamics, Phys. Rev. Lett., 2010, 104(22): 223002

    ADS  Google Scholar 

  15. N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 2010, 104(19): 195302

    ADS  Google Scholar 

  16. N. Henkel, F. Cinti, P. Jain, G. Pupillo, and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates, Phys. Rev. Lett., 2012, 108(26): 265301

    ADS  Google Scholar 

  17. M. Robert-de-Saint-Vincent, C. S. Hofmann, H. Schempp, G. Günter, S. Whitlock, and M. Weidemüller, Spontaneous avalanche ionization of a strongly blockaded Rydberg gas, Phys. Rev. Lett., 2013, 110(4): 045004

    ADS  Google Scholar 

  18. G. Bannasch, T. C. Killian, and T. Pohl, Strongly coupled plasmas via Rydberg blockade of cold atoms, Phys. Rev. Lett., 2013, 110(25): 253003

    ADS  Google Scholar 

  19. Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science, 2012, 336(6083): 887

    ADS  Google Scholar 

  20. T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Quantum nonlinear optics with single photons enabled by strongly interacting atoms, Nature, 2012, 488(7409): 57

    ADS  Google Scholar 

  21. D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett., 2013, 110(10): 103001

    ADS  Google Scholar 

  22. C. S. Hofmann, G. Günter, H. Schempp, M. Robertde-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-poissonian statistics of Rydberginteracting dark-state polaritons, Phys. Rev. Lett., 2013, 110(20): 203601

    ADS  Google Scholar 

  23. S. Sevinçli, N. Henkel, C. Ates, and T. Pohl, Nonlocal nonlinear optics in cold Rydberg gases, Phys. Rev. Lett., 2011, 107(15): 153001

    ADS  Google Scholar 

  24. W. Ketterle, D. Durfee, and D. Stamper-Kurn, Bose-Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi” Course CXI chapter Making, probing and understanding Bose-Einstein condensates, IOS Press, 1999: 67–176

    Google Scholar 

  25. W. Ketterle and M. W. Zwierlein, Ultra-Cold Fermi Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course ClXIV chapter Making, probing and understanding ultracold Fermi gases, Amsterdam: IOS Press, 2008: 95–287

    Google Scholar 

  26. R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler, and T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2012, 45(11): 113001

    ADS  Google Scholar 

  27. H. Saßmannshausen, F. Merkt, and J. Deiglmayr, Highresolution spectroscopy of Rydberg states in an ultracold cesium gas, Phys. Rev. A, 2013, 87(3): 032519

    ADS  Google Scholar 

  28. M. S. O’Sullivan and B. P. Stoicheff, Scalar polarizabilities and avoided crossings of high Rydberg states in Rb, Phys. Rev. A, 1985, 31(4): 2718

    ADS  Google Scholar 

  29. I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. Entin, Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n ⩽ 80, Phys. Rev. A, 2009, 79(5): 052504

    ADS  Google Scholar 

  30. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms, Phys. Rev. Lett., 2006, 97(8): 083003

    ADS  Google Scholar 

  31. S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr, M. Reetz-Lamour, and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas, Eur. Phys. J. D, 2006, 40(1): 37

    ADS  Google Scholar 

  32. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the Stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett., 2010, 104(7): 073003

    ADS  Google Scholar 

  33. J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. Löw, and T. Pfau, Atomic pair-state interferometer: Controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs, Phys. Rev. X, 2012, 2(3): 031011

    Google Scholar 

  34. J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, and P. Pillet, Observation of a resonant four-body interaction in cold cesium Rydberg atoms, Phys. Rev. Lett., 2012, 108(2): 023005

    ADS  Google Scholar 

  35. O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour, and M. Weidemüller, Survival probabilities in coherent exciton transfer with trapping, Phys. Rev. Lett., 2007, 99(9): 090601

    Google Scholar 

  36. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. Walraven, Two-dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 1998, 58(5): 3891

    ADS  Google Scholar 

  37. J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y. Ovchinnikov, and T. Pfau, Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap, Phys. Rev. A, 2002, 66(2): 023410

    ADS  Google Scholar 

  38. J. Catani, P. Maioli, L. D. Sarlo, F. Minardi, and M. Inguscio, Intense slow beams of bosonic potassium isotopes, Phys. Rev. A, 2006, 73(3): 033415

    ADS  Google Scholar 

  39. S. Chaudhuri, S. Roy, and C. S. Unnikrishnan, Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations, Phys. Rev. A, 2006, 74(2): 023406

    ADS  Google Scholar 

  40. R. Dubessy, K. Merloti, L. Longchambon, P.E. Pottie, T. Liennard, A. Perrin, V. Lorent, and H. Perrin, Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap, Phys. Rev. A, 2012, 85(1): 013643

    ADS  Google Scholar 

  41. P. A. Altin, N. P. Robins, D. Döring, J. E. Debs, R. Poldy, C. Figl, and J. D. Close, 85Rb tunable-interaction Bose-Einstein condensate machine, Rev. Sci. Instrum., 2010, 81(6): 063103

    ADS  Google Scholar 

  42. Y. J. Lin, A. R. Perry, R. L. Compton, I. Spielman, and J. Porto, Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential, Phys. Rev. A, 2009, 2009(6): 063631

    ADS  Google Scholar 

  43. J. Fortágh and C. Zimmermann, Magnetic microtraps for ultracold atoms, Rev. Mod. Phys., 2007, 79(1): 235

    ADS  Google Scholar 

  44. J. Reichel and V. Vuletic, Atom Chips, Wiley-VCH Verlag GmbH & Co. KGaA, 2011

    Google Scholar 

  45. C. S. Hofmann, et al., Combined optical and matterbased probing of Rydberg electromagnetically induced transparency, 2013 (to be published)

    Google Scholar 

  46. T. G. Tiecke, S. D. Gensemer, A. Ludewig, and J. Walraven, High-flux two-dimensional magneto-optical-trap source for cold lithium atoms, Phys. Rev. A, 2009, 80(1): 013409

    ADS  Google Scholar 

  47. We use ALVASOURCES from Alvatec, which are chromatefree metal vapor sources of the type AS-3-Rb87(98%)-20-F

  48. S. Götz, B. Höltkemeier, C. S. Hofmann, D. Litsch, B. D. DePaola, and M. Weidemüller, Versatile cold atom target apparatus, Rev. Sci. Instrum., 2012, 83(7): 073112

    ADS  Google Scholar 

  49. D. Jacob, E. Mimoun, L. D. Sarlo, M. Weitz, J. Dalibard, and F. Gerbier, Production of sodium Bose-Einstein condensates in an optical dimple trap, New J. Phys., 2011, 13(6): 065022

    ADS  Google Scholar 

  50. J. F. Clément, J. P. Brantut, M. Robert-de-Saint-Vincent, R. A. Nyman, A. Aspect, T. Bourdel, and P. Bouyer, Alloptical runaway evaporation to Bose-Einstein condensation, Phys. Rev. A, 2009, 79(6): 061406

    ADS  Google Scholar 

  51. T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Bose-Einstein condensation of cesium, Science, 2002, 299(5604): 232

    ADS  Google Scholar 

  52. M. Zaiser, J. Hartwig, D. Schlippert, U. Velte, N. Winter, V. Lebedev, W. Ertmer, and E. M. Rasel, Simple method for generating Bose-Einstein condensates in a weak hybrid trap, Phys. Rev. A, 2011, 83(3): 035601

    ADS  Google Scholar 

  53. S. J. M. Kuppens, K. L. Corwin, K. W. Miller, T. E. Chupp, and C. E. Wieman, Loading an optical dipole trap, Phys. Rev. A, 2000, 62(1): 013406

    ADS  Google Scholar 

  54. C. G. Townsend, N. H. Edwards, K. P. Zetie, C. Cooper, J. Rink, and C. Foot, High-density trapping of cesium atoms in a dark magneto-optical trap, Phys. Rev. A, 1996, 53(3): 1702

    ADS  Google Scholar 

  55. K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. Thomas, Scaling laws for evaporative cooling in time-dependent optical traps, Phys. Rev. A, 2001, 64(5): 051403

    ADS  Google Scholar 

  56. T. Lauber, J. Küber, O. Wille, and G. Birkl, Optimized Bose-Einstein-condensate production in a dipole trap based on a 1070-nm multi-frequency laser: Influence of enhanced two-body loss on the evaporation process, Phys. Rev. A, 2011, 84(4): 043641

    ADS  Google Scholar 

  57. A. Tauschinsky, R. M. T. Thijssen, S. Whitlock, H. B. van Linden van den Heuvell, and R. J. C. Spreeuw, Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip, Phys. Rev. A, 2010, 81(6): 063411

    ADS  Google Scholar 

  58. H. Hattermann, M. Mack, F. Karlewski, F. Jessen, D. Cano, and J. Fortágh, Detrimental adsorbate fields in experiments with cold Rydberg gases near surfaces, Phys. Rev. A, 2012, 86(2): 022511

    ADS  Google Scholar 

  59. M. Fleischhauer, A. Imamoglu, and J. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys., 2005, 77(2): 633

    ADS  Google Scholar 

  60. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockaded Rydberg ensemble, Phys. Rev. Lett., 2010, 105(19): 193603

    ADS  Google Scholar 

  61. H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, Coherent population trapping with controlled interparticle interactions, Phys. Rev. Lett., 2010, 104(17): 173602

    ADS  Google Scholar 

  62. S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Quantum interference in interacting threelevel Rydberg gases: Coherent population trapping and electromagnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys., 2011, 44(18): 184018

    ADS  Google Scholar 

  63. R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99

    MATH  ADS  Google Scholar 

  64. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, Evidence for coherent collective Rydberg excitation in the strong blockade regime, Phys. Rev. Lett., 2007, 99(16): 163601

    ADS  Google Scholar 

  65. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys., 2009, 5(2): 115

    Google Scholar 

  66. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys., 2009, 5(2): 110

    Google Scholar 

  67. Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Observation of coherent many-body Rabi oscillations, Nat. Phys., 2012, 8(11): 790

    Google Scholar 

  68. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett., 2004, 93(6): 063001

    ADS  Google Scholar 

  69. K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett., 2004, 93(16): 163001

    ADS  Google Scholar 

  70. T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Electric-field induced dipole blockade with Rydberg atoms, Phys. Rev. Lett., 2007, 99(7): 073002

    ADS  Google Scholar 

  71. A. Reinhard, K. C. Younge, and G. Raithel, Effect of Foerster resonances on the excitation statistics of many-body Rydberg systems, Phys. Rev. A, 2008, 78: 060702(R)

    ADS  Google Scholar 

  72. M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Cooperative excitation and many-body interactions in a cold Rydberg gas, Phys. Rev. Lett., 2012, 109(5): 053002

    ADS  Google Scholar 

  73. M. P. Robinson, B. L. Tolra, M. W. Noel, T. Gallagher, and P. Pillet, Spontaneous evolution of Rydberg atoms into an ultracold plasma, Phys. Rev. Lett., 2000, 85(21): 4466

    ADS  Google Scholar 

  74. T. C. Killian, Ultracold neutral plasmas, Science, 2007, 316(5825): 705

    ADS  Google Scholar 

  75. W. Li, M. W. Noel, M. P. Robinson, P. Tanner, T. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. Tate, Evolution dynamics of a dense frozen Rydberg gas to plasma, Phys. Rev. A, 2004, 70(4): 042713

    ADS  Google Scholar 

  76. A. Walz-Flannigan, J. R. Guest, J. H. Choi, and G. Raithel, Cold-Rydberg-gas dynamics, Phys. Rev. A, 2004, 69(6): 063405

    ADS  Google Scholar 

  77. J. P. Morrison, C. J. Rennick, J. S. Keller, and E. Grant, Evolution from a molecular Rydberg gas to an ultracold plasma in a seeded supersonic expansion of NO, Phys. Rev. Lett., 2008, 101(20): 205005

    ADS  Google Scholar 

  78. B. A. Remington, D. Arnett, R. Paul, Drake, and H. Takabe, Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 1999, 284(5419): 1488

    ADS  Google Scholar 

  79. H. M. Van Horn, Dense astrophysical plasmas, Science, 1991, 252(5004): 384

    ADS  Google Scholar 

  80. E. Shuryak, Physics of strongly coupled quark-gluon plasma, Prog. Part. Nucl. Phys., 2009, 62(1): 48

    ADS  Google Scholar 

  81. S. Ichimaru, Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids, Rev. Mod. Phys., 1982, 54(4): 1017

    ADS  Google Scholar 

  82. T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, Ultracold neutral plasmas, Phys. Rep., 2007, 449(4–5): 77

    ADS  Google Scholar 

  83. C. E. Simien, Y. C. Chen, P. Gupta, S. Laha, Y. Martinez, P. Mickelson, S. Nagel, and T. Killian, Using absorption imaging to study ion dynamics in an ultracold neutral plasma, Phys. Rev. Lett., 2004, 92(14): 143001

    ADS  Google Scholar 

  84. E. A. Cummings, J. E. Daily, D. S. Durfee, and S. Bergeson, Fluorescence measurements of expanding strongly coupled neutral plasmas, Phys. Rev. Lett., 2005, 95(23): 235001

    ADS  Google Scholar 

  85. S. G. Kuzmin and T. M. O’Neil, Numerical simulation of ultracold plasmas: How rapid intrinsic heating limits the development of correlation, Phys. Rev. Lett., 2002, 88(6): 065003

    ADS  Google Scholar 

  86. T. Pohl, T. Pattard, and J. M. Rost, Kinetic modeling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations, Phys. Rev. A, 2004, 70(3): 033416

    ADS  Google Scholar 

  87. S. D. Bergeson, A. Denning, M. Lyon, and F. Robicheaux, Density and temperature scaling of disorder-induced heating in ultracold plasmas, Phys. Rev. A, 2011, 83(2): 023409

    ADS  Google Scholar 

  88. I. I. Beterov, D. B. Tretyakov, I. I. Ryabtsev, A. Ekers, and N. Bezuglov, Ionization of sodium and rubidium nS, nP, and nD Rydberg atoms by blackbody radiation, Phys. Rev. A, 2007, 75(5): 052720

    ADS  Google Scholar 

  89. L. Barbier and M. Cheret, Experimental study of penning and Hornbeck-Molnar ionisation of rubidium atoms excited in a high s or d level (5d⩽ nl⩽11s), J. Phys. B: At. Mol. Opt. Phys., 1987, 20(6): 1229

    ADS  Google Scholar 

  90. A. Kumar, B. C. Sahaa, C. A. Weatherforda, and S. K. Verma, A systematic study of Hornbeck Molnar ionization involving Rydberg alkali atoms, J. Mol. Struct. Theochem., 1999, 487(1–2): 1

    Google Scholar 

  91. M. S. Murillo, Using Fermi statistics to create strongly coupled ion plasmas in atom traps, Phys. Rev. Lett., 2001, 87(11): 115003

    ADS  Google Scholar 

  92. P. K. Shukla and K. Avinash, Phase coexistence and a critical point in ultracold neutral plasmas, Phys. Rev. Lett., 2011, 107(13): 135002

    ADS  Google Scholar 

  93. L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Opt. Lett., 1979, 4(7): 205

    ADS  Google Scholar 

  94. S. Wüster, J. Stanojevic, C. Ates, T. Pohl, P. Deuar, J. F. Corney, and J. M. Rost, Correlations of Rydberg excitations in an ultracold gas after an echo sequence, Phys. Rev. A, 2010, 81(2): 023406

    ADS  Google Scholar 

  95. D. Breyel, T. L. Schmidt, and A. Komnik, Rydberg crystallization detection by statistical means, Phys. Rev. A, 2012, 86(2): 023405

    ADS  Google Scholar 

  96. M. Gärttner, K. P. Heeg, T. Gasenzer, and J. Evers, Optimal self-assembly of Rydberg excitations for quantum gate operations, Phys. Rev. A, 2013, 88(4): 043410

    ADS  Google Scholar 

  97. M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electromagnetically induced transparency, Phys. Rev. Lett., 2000, 84(22): 5094

    ADS  Google Scholar 

  98. C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Strong interaction effects on the atom counting statistics of ultracold Rydberg gases, J. Phys. B: At. Mol. Opt. Phys., 2006, 39(11): L233

    ADS  Google Scholar 

  99. H. Schempp, G. Günter, M. Robert-de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik, D. W. Schönleber, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Full counting statistics of laser excited Rydberg aggregates in a one-dimensional geometry, arXiv: 1308.0264, 2013

    Google Scholar 

  100. D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett., 2011, 107(21): 213601

    ADS  Google Scholar 

  101. V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F. Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms, Phys. Rev. Lett., 2012, 109(23): 233602

    ADS  Google Scholar 

  102. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, Strongly interacting photons in hollow-core waveguides, Phys. Rev. A, 2011, 83(3): 033806

    ADS  Google Scholar 

  103. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett., 2011, 107(13): 133602

    ADS  Google Scholar 

  104. M. Fleischhauer, J. Otterbach, and R. G. Unanyan, Bose-Einstein condensation of stationary-light polaritons, Phys. Rev. Lett., 2008, 101(16): 163601

    ADS  Google Scholar 

  105. G. Nikoghosyan, F. E. Zimmer, and M. B. Plenio, Dipolar Bose-Einstein condensate of dark-state polaritons, Phys. Rev. A, 2012, 86(2): 023854

    ADS  Google Scholar 

  106. J. Honer, R. Löw, H. Weimer, T. Pfau, and H. P. Büchler, Artificial atoms can do more than atoms: Deterministic single photon subtraction from arbitrary light fields, Phys. Rev. Lett., 2011, 107(9): 093601

    ADS  Google Scholar 

  107. J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Pillet, and P. Grangier, Generating non-Gaussian states using collisions between Rydberg polaritons, Phys. Rev. A, 2012, 86(2): 021403

    ADS  Google Scholar 

  108. I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki, Long-range interactions and entanglement of slow singlephoton pulses, Phys. Rev. A, 2005, 72(4): 043803

    ADS  Google Scholar 

  109. D. Petrosyan and M. Fleischhauer, Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators, Phys. Rev. Lett., 2008, 100(17): 170501

    ADS  Google Scholar 

  110. G. Günter, M. Robert-de-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, and M. Weidemüller, Interaction enhanced imaging of individual Rydberg atoms in dense gases, Phys. Rev. Lett., 2012, 108(1): 013002

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. S. Hofmann, S. Whitlock or M. Weidemüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, C.S., Günter, G., Schempp, H. et al. An experimental approach for investigating many-body phenomena in Rydberg-interacting quantum systems. Front. Phys. 9, 571–586 (2014). https://doi.org/10.1007/s11467-013-0396-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0396-7

Keywords

Navigation