Skip to main content
Log in

High-vacuum tip enhanced Raman spectroscopy

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman spectroscopy (TERS) is high-sensitivity and high spatial-resolution optical analytical technique with nanoscale resolution beyond the diffraction limit. It is also one of the most recent advances in nanoscale chemical analysis. This review provides an overview of the state-of-art inTERS, in-depth information about the different available types of instruments including their (dis)advantages and capabilities. Finally, an overview about recent development in High-Vacuum TERS is given and some challenges are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27(4): 241

    Article  Google Scholar 

  2. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, Metal-enhanced fluorescence: An emerging tool in biotechnology, Curr. Opin. Biotechnol., 2005, 16(1): 55

    Article  Google Scholar 

  3. K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 2007, 58(1): 267

    Article  ADS  Google Scholar 

  4. Y. C. Cao, R. C. Jin, and C. A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science, 2002, 297(5586): 1536

    Article  ADS  Google Scholar 

  5. Y. R. Fang, Y. Z. Li, H. X. Xu, and M. T. Sun, Ascertaining p, p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles, Langmuir, 2010, 26(11): 7737

    Article  Google Scholar 

  6. B. Dong, Y. R. Fang, X. W. Chen, H. X. Xu, and M. T. Sun, Substrate-, wavelength-, and time-dependent plasmonassisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p, p′-dimercaptoazobenzene on Au, Ag, and Cu films, Langmuir, 2011, 27(17): 10677

    Article  Google Scholar 

  7. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, Surfaceenhanced Raman scattering, J. Phys.: Condens. Matter, 1992, 4(5): 1143

    ADS  Google Scholar 

  8. D. L. Jeanmaire and R. P. Vanduyne, Surface raman spectroelectrochemistry, J. Electroanal. Chem., 1977, 84(1): 1

    Article  Google Scholar 

  9. K. Kneipp and H. Kneipp, Single molecule Raman scattering, Appl. Spectrosc., 2006, 60(12): 322

    Article  ADS  Google Scholar 

  10. P. Johansson, H. X. Xu, and M. Kall, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles, Phys. Rev. B, 2005, 72(3): 5427

    ADS  Google Scholar 

  11. Z. L. Zhang, P. F. Yang, H. X. Xu, and H. R. Zheng, Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers, J. Appl. Phys., 2013, 113(3): 033102

    Article  ADS  Google Scholar 

  12. W. Y. Li, P. C. Camargo, X. M. Lu, and Y. N. Xia, Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering, Nano Lett., 2009, 9(1): 485

    Article  ADS  Google Scholar 

  13. B. Pettinger, Single-molecule surface- and tip-enhanced raman spectroscopy, Mol. Phys., 2010, 108(16): 2039

    Article  ADS  Google Scholar 

  14. J. Steidtner and B. Pettinger, High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum, Rev. Sci. Instrum., 2007, 78(10): 3104

    Google Scholar 

  15. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy, Phys. Rev. Lett., 2004, 92(9): 096101

    Article  ADS  Google Scholar 

  16. M. Fleischmann, P. L. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 1974, 26(2): 163

    Article  ADS  Google Scholar 

  17. M. G. Albrecht and J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 1977, 99(15): 5215

    Article  Google Scholar 

  18. H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E, 2000, 62(3): 4318

    Article  ADS  Google Scholar 

  19. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357

    Article  ADS  Google Scholar 

  20. M. T. Sun, Z. P. Li, Y. J. Liu, and H. X. Xu, Direct visual evidence for chemical mechanisms of SERRS via charge transfer in Au20-pyrazine-Au20 junction, J. Raman Spectrosc., 2009, 40(12): 1942

    Article  ADS  Google Scholar 

  21. M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer (II): Binding-site and quantum-size effects, J. Raman Spectrosc., 2009, 40(9): 1172

    Article  ADS  Google Scholar 

  22. M. T. Sun and H. X. Xu, A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions, Small, 2012, 8(18): 2777

    Article  MathSciNet  Google Scholar 

  23. B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, Surfaceenhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces, Single Mol., 2002, 3(5–6): 285

    Article  ADS  Google Scholar 

  24. B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN-ions at gold surfaces, J. Electroanal. Chem., 2003, 554(3): 293

    Article  Google Scholar 

  25. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, and J. F. Maguire, Nano-Raman spectroscopy with side-illumination optics, J. Raman Spectrosc., 2005, 36(11): 1068

    Article  ADS  Google Scholar 

  26. J. Wessel, Surface-enhanced optical microscopy, J. Opt. Soc. Am. B, 1985, 2(9): 1538

    Article  ADS  Google Scholar 

  27. R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, Nanoscale chemical analysis by tip-enhanced Raman spectroscopy, Chem. Phys. Lett., 2000, 318(1–3): 131

    Article  ADS  Google Scholar 

  28. B. Ren, Z. Liu, X. Wang, Z. L. Yang, Z. Q. Tian, P. M. Champion, and L. D. Ziegler, Electromagnetic coupling effect for surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy, AIP Conf. Proc., 2010, 1267(12): 1241

    Article  ADS  Google Scholar 

  29. Z. Liu, Z. B. Chen, S. Y. Ding, X. Wang, J. H. Tian, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, Z. Q. Tian, P. M. Champion, and L. D. Ziegler, Fishing-mode tip-enhanced Raman spectroscopy (FM-TERS) for studying single-molecule junctions, AIP Conf. Proc., 2010, 1267(12): 1255

    Article  ADS  Google Scholar 

  30. K. F. Domke and B. Pettinger, In situ discrimination between axially complexed and ligand-free Co porphyrin on Au (111) with tip-enhanced Raman spectroscopy, ChemPhysChem, 2009, 10(11): 1794

    Article  Google Scholar 

  31. S. Pahlow, A. März, B. Seise, K. Hartmann, I. Freitag, E. Kämmer, R. Böhme, V. Deckert, K. Weber, D. Cialla, and J. Popp, Bioanalytical application of surface- and tip-enhanced Raman spectroscopy, Eng. Life Sci., 2012, 12(2): 131

    Article  Google Scholar 

  32. W. H. Zhang, B. S. Yeo, T. Schmid, and R. Zenobi, Single molecule tip-enhanced Raman spectroscopy with silver tips, J. Phys. Chem. C, 2007, 111(4): 1733

    Article  Google Scholar 

  33. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au (111): Bleaching behavior under the influence of high electromagnetic fields, J. Raman Spectrosc., 2005, 36(6–7): 541

    Article  ADS  Google Scholar 

  34. K. F. Domke and B. Pettinger, Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: Selective suppression of E1 modes, J. Raman Spectrosc., 2009, 40(10): 1427

    Article  ADS  Google Scholar 

  35. M. T. Sun, Y. R. Fang, Z. L. Yang, and H. X. Xu, Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering, Phys. Chem. Chem. Phys., 2009, 11(41): 9412

    Article  Google Scholar 

  36. Z. L. Yang, Q. H. Li, Y. R. Fang, and M. T. Sun, Deep ultraviolet tip-enhanced Raman scattering, Chem. Commun., 2011, 47(32): 9131

    Article  Google Scholar 

  37. B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules, Annu. Rev. Phys. Chem., 2012, 63(1): 379

    Article  ADS  Google Scholar 

  38. B. Ren, G. Picardi, and B. Pettinger, Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching, Rev. Sci. Instrum., 2004, 75(4): 837

    Article  ADS  Google Scholar 

  39. X. Wang, Y. Cui, and B. Ren, Fabrication of Au tips for tip-enhanced Raman spectroscopy, J. Chem. Chinese Univ., 2007, 28(3): 522

    Google Scholar 

  40. D. H. Andersen and Z. L. Zhang, Contact area on rough surface of nonlinear isotropic brittle materials, Wear, 2011, 271(7–8): 1017

    Article  Google Scholar 

  41. C. Williams and D. Roy, Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy, J. Vac. Sci. Technol. B, 2008, 26(5): 1761

    Article  Google Scholar 

  42. N. Jiang, E. T. Foley, J. M. Klingsporn, M. D. Sonntag, N. A. Valley, J. A. Dieringer, T. Seideman, G. C. Schatz, M. C. Hersam, and R. P. Van Duyne, Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy, Nano Lett., 2012, 12(10): 5061

    Article  ADS  Google Scholar 

  43. Z. L. Zhang, H. R. Zheng, H. X. Xu, and M. T. Sun, Tipenhanced ultrasensitive stokes and anti-stokes Raman spectroscopy in high vacuum, Plasmonics, 2013, 8(2): 523

    Article  Google Scholar 

  44. Z. L. Zhang, L. Chen, M. T. Sun, P. P. Ruan, H. R. Zheng, and H. X. Xu, Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS, Nanoscale, 2013, 5(8): 3249

    Article  ADS  Google Scholar 

  45. M. T. Sun, Z. L. Zhang, H. R. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports, 2012, 2: 647

    Article  ADS  Google Scholar 

  46. M. T. Sun, Y. R. Fang, Z. Y. Zhang, and H. X. Xu, Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy, Phys. Rev. E, 2013, 87(2): 020401 (R)

    Article  ADS  Google Scholar 

  47. Z. L. Zhang, M. T. Sun, P. P. Ruan, H. R. Zheng, and H. X. Xu, Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS, Nanoscale, 2013, 5(10): 4151

    Article  ADS  Google Scholar 

  48. M. T. Sun, Z. L. Zhang, L. Chen, and H. X. Xu, Tipenhanced resonance couplings revealed by high vacuum tipenhanced Raman spectroscopy, Adv. Optical Mater., 2013, 1(6): 449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Tao Sun.

Additional information

These authors contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZL., Chen, L., Sheng, SX. et al. High-vacuum tip enhanced Raman spectroscopy. Front. Phys. 9, 17–24 (2014). https://doi.org/10.1007/s11467-013-0364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0364-2

Keywords

Navigation