Skip to main content
Log in

Personalized biomedical devices & systems for healthcare applications

  • Feature Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tröster G. The agenda of wearable healthcare. In: Haux R, Kulikowski C, eds. IMIA Yearbook of Medical Informatics 2005: Ubiquitous Health Care Systems. 2005, 125–138

  2. Reid P P, ComptonWD, Grossman J H, Fanjiang G, eds. Building a Better delivery System: A New Engineering/Health Care Partnership. National Academy Press, 2005

  3. Habetha J. The MyHeart project — Fighting cardiovascular diseases by prevention and early diagnosis, In: Proceeding 28th Annual International IEEE EMBS Conference, 2006, 6746–6749

  4. Milenkovic A, Otto C, Jovanov E. Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 2006, 29(13–14): 2521–2533

    Article  Google Scholar 

  5. Zephyr. http://www.zephyr-technology.com/bioharness-bt.html

  6. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. In IEEE Std C95.1, 2006

  7. Ren H, Meng M Q H, Chen X. Physiological information acquisition through wireless biomedical sensor networks. In: Proceedings of the 2005 IEEE International Conference on Information Acquisition, Hong Kong and Macau, China, 2005

  8. Yang G Z, ed. Body Sensor Networks. London: Springer-Verlag, 2006

    Google Scholar 

  9. Park S, Jayaraman S. E-health and quality of life: The role of the wearable motherboard. In: Lymberis A, DeRossi D, eds. Wearable eHealth Systems for Personalised Health Management, IOS Press, Amsterdam, 2004, 239–252

    Google Scholar 

  10. Lukowicz P, Kirstein T, Tröster G. Wearable systems for health care applications. Methods of Information in Medicine, 2004, 43(3): 232–238

    Google Scholar 

  11. Cottet D, Grzyb J, Kirstein T, Tröster G. Electrical characterization of textile transmission lines. IEEE Transactions on Advanced Packaging, 2003, 26(2): 182–190

    Article  Google Scholar 

  12. Scilingo E P, Lorussi F, Mazzoldi A, De Rossi D. Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 2003, 3(4): 460–467

    Article  Google Scholar 

  13. Dunne L E, Brady S, Smyth B, Diamond D. Initial development and testing of a novel foam-based pressure sensor for wearable sensing. Journal of Neuroengineering and Rehabilitation, 2005, 2(4): 1–7

    Google Scholar 

  14. Otto C, Milenkovic A, Sanders C, Jovanov E. System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 2006, 1(4): 307–326

    Google Scholar 

  15. Hill J L. System architecture for wireless sensor networks. Dissertation for the Doctoral Degree. Berkeley: University of California, 2003

    Google Scholar 

  16. Cho H C, Marbán E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circulation Research, 2010, 106(4): 674–685

    Article  Google Scholar 

  17. GivenImage. http://www.givenimaging.com/en-us/Pages/Given-WelcomePage.aspx

  18. Vicon. http://www.vicon.com

  19. Gypsy 7. http://www.metamotion.com/gypsy/gypsy-motion-capture-system.htm

  20. Donno M, Palange E, Di Nicola F, Bucci G, Ciancetta F. A new flexible optical fiber goniometer for dynamic angular, measurements: application to human joint movement monitoring. IEEE Transactions on Instrumentation and Measurement, 2008, 57(8): 1614–1620

    Article  Google Scholar 

  21. De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Electroactive fabrics and wearable manmachine interfaces. In: Tao X, ed. Wearable Electronics and Photonics.Textiles: Woodhead Publishing, 2005, 59–80

    Chapter  Google Scholar 

  22. Intersense. http://www.intersense.com

  23. Eltaib M E H, Hewit J R. Tactile sensing technology for minimal access surgery-a review. Mechatronics, 2003, 13(10): 1163–1177

    Article  Google Scholar 

  24. Coles T, Meglan D, John N W. The role of haptics in medical training simulators: A survey of the state-of-the-art. IEEE Transactions on Haptics, 2010

  25. Lee M H, Nicholls H R. Tactile sensing for mechatronics-a state of the art survey. Mechatronics, 1999, 9(1): 1–31

    Article  MathSciNet  Google Scholar 

  26. King C H, Culjat M O, Franco M L, Lewis C E, Grundfest W S, Bisley J W. Tactile feedback induces reduced grasping force in robot-assisted surgery. IEEE Transactions on Haptics, 2009, 2(2): 103–110

    Article  Google Scholar 

  27. Tanaka M, Lévêque J L, Tagami H, Kikuchi K, Chonan S. The “haptic finger”- a new device for monitoring skin condition. Skin Research and Technology, 2003, 9(2): 131–136

    Article  Google Scholar 

  28. Yeatman EM, Mitcheson P D. Energy scavenging. In: Yang G Z, ed. Body Sensor Networks. Springer, 2006, 183–217

  29. Glukhovsky A, Iddan G J, Meron G. US2005228259, 2005

  30. Koplow M, Chen A, Steingart D, Wright P K, Evans JW. Thick film thermoelectric energy harvesting systems for biomedical applications. International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2008), 2008, 322–325

  31. Yoo H J, Song S J, Cho N, Kim H J. Low energy on-body communication for BSN. Workshop of Body Sensor Networks, 2007, 15–28

  32. Krause A, Smailagic A, Siewiorek D P. Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing, 2006, 5(2): 113–127

    Article  Google Scholar 

  33. Junker H, Lukowicz P. TrÖster G. Sampling frequency, signal resolution and the accuracy of wearable context recognition systems. In: Proceedings of 8th International Symposium on Wearable Computers (ISWC), 2004

  34. Guo T, Zhang L, Liu W, Zhou Z A. Novel solution to power problems in implanted biosensor networks. In: Proceedings of 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society, 2006, 5952-5955

  35. Burdea G C. Virtual rehabilitation—benefits and challenges. Methods of Information in Medicine, 2003, 42(5): 519–523

    Google Scholar 

  36. Sveistrup H. Motor rehabilitation using virtual reality. Journal of Neuroengineering and Rehabilitation, 2004, 1(1): 10

    Article  Google Scholar 

  37. Weiss P L, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. In:ME Selzer, L Cohen, F H Gage, S C larke, P W Duncan. (Editors). Textbook of Neural Repair and Rehabilitation. Cambridge: University Press, 2006, 182–197

    Google Scholar 

  38. Gunduz A. Human motor control through electrocorticographic brain machine interfaces, PhD thes is, University of Florida, 2008

  39. Oviatt S L. Advances in robust multimodal interface design. IEEE Computer Graphics and Applications, 2003, 23(5): 62–68

    Article  Google Scholar 

  40. Carlson M. Understanding the “Mother’s Touch”. Harvard Mahoney Neuroscience Institute Letter to the Brain, 1998, 7(1): 12–13

    Google Scholar 

  41. Filed T. Infants’ need for touch. Human Development, 2002, 45(2): 100–103

    Article  Google Scholar 

  42. Harlow H F. The nature of love. http://psychclassics.yorku.ca/Harlow/love.htm

  43. Goleman D. The experience of touch: Research points to a critical role. New York Times, February 2, 1988

  44. Chouvardas V G, Miliou A N, Hatalis M K. Tactile displays: overview and recent advances. Displays, 2008, 29(3): 185–194

    Article  Google Scholar 

  45. Toney A, Dunne L, Thomas B H, Ashdown S P. A shoulder pad insert vibrotactile display. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC03), 2003, 35–44

  46. Cholewiak R W, Collins A A. Vibrotactile localization on the arm: effects of place, space, and age. Perception & Psychophysics, 2003, 65(7): 1058–1077

    Article  Google Scholar 

  47. Kyung K U, Ahn M, Kwon D S, Srinivasan M. Perceptual and biomechanical frequency response of human skin: implication for design of tactile displays. In: Proceeding of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC 2005), 2005, 96–101

  48. Lieberman J, Breazeal C. TIKL: Development of a wearable vibrotactile feedback suit for improved human motor learning. IEEE Transactions on Robotics, 2007, 23(5): 919–926

    Article  Google Scholar 

  49. Lindeman R W, Yanagida Y, Hosaka K, Abe S. The TactaPack: A wireless sensor/actuator package for physical therapy applications. In: Proceeding of 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006, 337–341

  50. Markow T, Ramakrishnan N, Huang K, Starner T, Eicholtz M, Garrett S, Profita H, Scarlata A, Backus D. Mobile music touch: vibration stimulus in hand rehabilitation. In: Proceeding of 4th International Conference on Pervasive Computing Technologies for Healthcare, 2010, 1–8

  51. De Rossi D, Carpi F, Lorussi F, Scilingo E P, Tognetti A. Wearable kinesthetic systems and emerging technologies in actuation for upperlimb neurorehabilitation. In: Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, 6830–6833

  52. Bonanni L, Vaucelle C, Lieberman J, Zuckerman O. TapTap: A haptic wearable for asynchronous distributed touch therapy. In: Extended Abstracts on Human Factors in Computing, 2006, 580–585

  53. Vaucelle C, Abbas Y. Touch: Sensitive apparel. In: Extended Abstracts on Human Factors in Computing Systems, 2007, 2723–2728

  54. Koo I M, Jung K, Koo J C, Nam J D, Lee Y K, Choi H R. Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics, 2008, 24(3): 549–558

    Article  Google Scholar 

  55. Bark K, Wheeler J, Shull P, Savall J, Cutkosky M. Rotational skin stretch feedback: A wearable haptic display for motion. IEEE Transactions on Haptics, 2010, 166–176

  56. Wheeler J, Bark K, Savall J, Cutkosky M. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(1): 58–66

    Article  Google Scholar 

  57. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature, 2000, 405(6785): 417

    Article  Google Scholar 

  58. Pillcam. http://www.givenimaging.com

  59. Endocapsule, http://www.olympusamerica.com/msg_section/index.asp

  60. MicroCam. http://www.intromedic.com

  61. OMOM. http://www.jinshangroup.com

  62. Klauser A G, Schindlbeck N E, Müller-Lissner S A. Symptoms in gastro-oesophageal reflux disease. Lancet, 1990, 335(8683): 205–208

    Article  Google Scholar 

  63. Mackay R S, Jacobson B. Endoradiosonde. Nature, 1957, 179(4572): 1239–1240

    Article  Google Scholar 

  64. SmartPill. http://www.smartpillcorp.com

  65. Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research, 1999, 16(2): 266–271

    Article  Google Scholar 

  66. Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today, 2000, 3(11): 385–392

    Article  Google Scholar 

  67. Kong K C, Cha J, Jeon D, Cho D I. A rotational micro biopsy device for the capsule endoscope. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, Canada, 2005, 1839–1843

  68. Park S, Koo K i, Bang SM, Park J Y, Song S Y, Cho D D. Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering, 2008, 18(2): 25–32

    Article  Google Scholar 

  69. Cavallotti C, Piccigalloa M, Susiloa E, Valdastria P, Menciassia A. Paolo Dario. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical, 2009, 156(1): 72–78

    Google Scholar 

  70. Rasouli M, Kencana A P, Van A H, Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceeding of IEEE Conference on Robotics Automation and Mechatronics, Singapore, 2010, 68–71

  71. Kim HM, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy, 2010, 72(2): 381–387

    Article  Google Scholar 

  72. Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy, 2008, 67(7): 1153–1158

    Article  Google Scholar 

  73. Bradley P D. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. In: Proceeding of IEEE Biomedical Circuits and Systems Conference, 2006, 158–161

  74. Chen X, Zhang X, Zhang L, Li X, Qi N, Jiang H, Wang Z. Awireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(1): 11–22

    Article  Google Scholar 

  75. Chi B, Yao J, Han S, Xie X, Li G, Wang Z. A 2.4 GHz low power wireless transceiver analog front-end for endoscopy capsule system. Analog Integrated Circuits and Signal Processing, 2007, 51(2): 59–71

    Article  Google Scholar 

  76. Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology, 2008, 14(26): 4142–4145

    Article  Google Scholar 

  77. Guanying M, Guozheng Y, Xiu H. Power transmission for gastrointestinal microsystems using inductive coupling. Physiological Measurement, 2007, 28(3): N9–N18

    Article  Google Scholar 

  78. Lenaerts B, Puers R. Omnidirectional Inductive Powering for Biomedical implants. Springer Netherlands, 2009

    Google Scholar 

  79. Fischer D, Schreiber R, Levi D, Eliakim R. Capsule endoscopy: the localization system. Gastrointestinal Endoscopy Clinics of North America, 2004, 14(1): 25–31

    Article  Google Scholar 

  80. Hu C, Meng M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, IM., Phee, S.J., Luo, Z. et al. Personalized biomedical devices & systems for healthcare applications. Front. Mech. Eng. 6, 3–12 (2011). https://doi.org/10.1007/s11465-011-0209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-011-0209-z

Keywords

Navigation