Skip to main content
Log in

Wavelet linear estimations of density derivatives from a negatively associated stratified size-biased sample

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We define a wavelet linear estimator for density derivative in Besov space based on a negatively associated stratified size-biased random sample. We provide two upper bounds of wavelet estimations on L p (1 ⩽ p < ∞) risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alam K, Saxena K M L. Positive dependence in multivariate distribution. Comm Statist-Theory Methods A, 1981, 10: 1183–1196

    Article  MathSciNet  Google Scholar 

  2. Chaubey Y P, Doosti H, Prakasa Rao B L S. Wavelet based estimation of the derivatives of a density for a negatively associated process. J Stat Theory Pract, 2008, 2: 453–463

    Article  MATH  MathSciNet  Google Scholar 

  3. Chesneau C. Wavelet block thresholding for density estimation in the presence of bias. J Korean Statist Soc, 2010, 39: 43–53

    Article  MathSciNet  Google Scholar 

  4. Chesneau C, Dewan I, Doosti H. Wavelet linear density estimation for associated stratified size-biased sample. J Nonparametr Stat, 2012, 2: 429–445

    Article  MathSciNet  Google Scholar 

  5. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992

    Book  MATH  Google Scholar 

  6. Efromovich S. Nonparametric Curve Estimation. Methods, Theory, and Applications. New York: Springer, 1999

    MATH  Google Scholar 

  7. Hädle W, Kerkyacharian G, Picard D, Tsybakov A. Wavelets, Approximations, and Statistical Applications. Lecture Notes in Statistics, Vol 129. Berlin: Springer-Verlag, 1998

    Book  Google Scholar 

  8. Joag-Dev K, Proschan F. Negative association of random variables with application. Ann Statist, 1983, 11: 286–295

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu Y M, Wang H Y. Wavelet estimations for density derivatives. Sci China Math, 2013, (3): 483–495

    Google Scholar 

  10. Newman C M. Normal fluctuations and the KFG inequalities. Comm Math Phys, 1980, 74: 119–128

    Article  MATH  MathSciNet  Google Scholar 

  11. Patil G P, Rao C R. The Weighted Distributions: A Survey of Their Applications. Amsterdam: North-Holland, 1977

    Google Scholar 

  12. Prakasa Rao B L S. Nonparametric estimation of the derivatives of a density by the method of wavelets. Bull Inform Cybernet, 1996, 28: 91–100

    MATH  MathSciNet  Google Scholar 

  13. Ramirez P, Vidakovic B. Wavelet density estimation for stratified size-biased sample. J Statist Plann Inference, 2010, 140: 419–432

    Article  MATH  MathSciNet  Google Scholar 

  14. Shao Q M. A comparison theorem on moment inequalities between negatively associated and independent random variables. J Theoret Probab, 2000, 13: 343–356

    Article  MATH  MathSciNet  Google Scholar 

  15. Singh R S. Applications of estimators of a density and its derivatives to certain statistical problems. J Roy Statist Soc Ser B, 1977, 39: 357–363

    MATH  MathSciNet  Google Scholar 

  16. Singh R S. Non-parametric estimation of derivatives of average of µ-densities with convergence rates and applications. SIAM J Appl Math, 1978, 35: 637–649

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J. Wavelet linear estimations of density derivatives from a negatively associated stratified size-biased sample. Front. Math. China 9, 623–640 (2014). https://doi.org/10.1007/s11464-014-0353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0353-y

Keywords

MSC