Skip to main content
Log in

Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal stability analysis and error estimate for these two algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ervin V, Layton W, Maubach J. A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations. Numer Methods Partial Differential Equations, 1996, 12: 333–346

    Article  MathSciNet  MATH  Google Scholar 

  2. Ghia U, Ghia K N, Shin C T. High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys, 1982, 48: 387–411

    Article  MATH  Google Scholar 

  3. He Y N. Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations. Math Comp, 2005, 74: 1201–1216

    Article  MathSciNet  MATH  Google Scholar 

  4. He Y N, Li J. A penalty finite element method based on the Euler implicit explicit scheme for the time-dependent Navier-Stokes equations. J Comput Appl Math, 2010, 235: 708–725

    Article  MathSciNet  MATH  Google Scholar 

  5. He Y N, Li J, Yang X Z. Two-level penalized finite element methods for the stationary Navier-Stoke equations. Int J Inf Syst Sci, 2006, 2: 131–143

    MathSciNet  MATH  Google Scholar 

  6. He Y N, Li K T. Two-level stabilized finite element methods for the steady Navier-Stokes problem. Computing, 2005, 74: 337–351

    Article  MathSciNet  MATH  Google Scholar 

  7. He Y N, Wang A W. A simplified two-level method for the steady Navier-Stokes equations. Comput Methods Appl Mech Engrg, 2008, 197: 1568–1576

    Article  MathSciNet  MATH  Google Scholar 

  8. Hecht F, Pironneau O, Hyaric A L, Ohtsuka K. FREEFEM++, version 2.3-3. 2008, http://www.freefem.org

    Google Scholar 

  9. Heywood J G, Rannacher R. Finite-element approximations of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order spatial discretization. SIAM J Numer Anal, 1982, 19: 275–311

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang P Z, Feng X L. Error estimates for two-level penalty finite volume method for the stationary Navier-Stokes equations. Math Methods Appl Sci, 2013, DOI: 10.1002/mma.2736

    Google Scholar 

  11. Huang P Z, Feng X L, Liu D M. Two-level stabilized method based on three corrections for the stationary Navier-Stokes equations. Appl Numer Math, 2012, 62: 988–1001

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang P Z, Feng X L, Su H Y. Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokes equations. Nonlinear Anal Real World Appl, 2013, 14: 1171–1181

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang P Z, He Y N, Feng X L. Two-level stabilized finite element method for Stokes eigenvalue problem. Appl Math Mech (English Ed), 2012, 33: 621–630

    Article  MathSciNet  Google Scholar 

  14. Hughes T J R, Liu W T, Brooks A J. Finite element analysis of incompressible viscous flows by the penalty function formulation. J Comput Phys, 1979, 30: 1–60

    Article  MathSciNet  MATH  Google Scholar 

  15. Layton W. A two level discretization method for the Navier-Stokes equations. Comput Math Appl, 1993, 26: 33–38

    Article  MathSciNet  MATH  Google Scholar 

  16. Layton W, Lenferink W. Two-level Picard and modified Picard methods for the Navier-Stokes equations. Appl Math Comput, 1995, 69: 263–274

    Article  MathSciNet  MATH  Google Scholar 

  17. Layton W, Tobiska L. A two-level method with backtracking for the Navier-Stokes equations. SIAM J Numer Anal, 1998, 35: 2035–2054

    Article  MathSciNet  MATH  Google Scholar 

  18. Li J. Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations. Appl Math Comput, 2006, 182: 1470–1481

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu X, Lin P. Error estimate of the P 1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations. Numer Math, 2010, 115: 261–287

    Article  MathSciNet  MATH  Google Scholar 

  20. Oden J T, Kikuchi N. Penalty method for constrained problems in elasticity. Int J Numer Methods Engrg, 1982, 18: 701–725

    Article  MathSciNet  MATH  Google Scholar 

  21. Shang Y Q. A parallel two-level linearization method for incompressible flow problems. Appl Math Lett, 2011, 24: 364–369

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen J. On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer Math, 1992, 62: 49–73

    Article  MathSciNet  Google Scholar 

  23. Shen J. On error estimates of the penalty method for unsteady Navier-Stokes equations. SIAM J Numer Anal, 1995, 32: 386–403

    Article  MathSciNet  MATH  Google Scholar 

  24. Taylor C, Hood P, A numerical solution of the Navier-Stokes equations using the finite element technique. Comput Fluids, 1973, 1: 73–100

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu J. A novel two-grid method for semilinear elliptic equations. SIAM J Sci Comput, 1994, 15: 231–237

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu J. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J Numer Anal, 1996, 33: 1759–1778

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang Y, He Y N. A two-level finite element method for the stationary Navier-Stokes equations based on a stabilized local projection. Numer Methods Partial Different Equations, 2011, 27: 460–477

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinnian He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., He, Y. & Feng, X. Convergence and stability of two-level penalty mixed finite element method for stationary Navier-Stokes equations. Front. Math. China 8, 837–854 (2013). https://doi.org/10.1007/s11464-013-0257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-013-0257-2

Keywords

MSC