Skip to main content
Log in

Investigating silica interface rate-dependent friction behavior under dry and lubricated conditions with molecular dynamics

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The interfacial properties of silica determine the intrinsic behavior of sand and are of great importance due to its widespread application in geotechnical engineering. To investigate the sand behavior from a bottom-up perspective, the molecular dynamics approach is adopted for both dry and lubricated conditions. Friction simulations are performed using a virtual spring to pull the silica slider on the substrate at a wide range of velocities when different normal loads are applied. It has been found that the orientation of the silica surface influences dry friction. The friction force for the surface with normal vector along (001) direction is larger than that on (100) surface due to anisotropic energy corrugation, and the model with incommensurability has the smallest friction force. The Prandtl–Tomlinson model could explain the stick–slip phenomenon, and as the dominant friction mechanism shifts from thermal activation to phonon excitations and the delay effect of motion transmission, the velocity dependence of the friction crosses over from the logarithmic to the linear relationship at around 10 m/s. The Amontons law for adhering surface describes the silica interfacial friction behavior well. The friction force is linearly correlated with the external normal load and remains a finite value F0 when the external load equals 0. The lubricated friction results indicate that the friction coefficient decreases against the water content, while there is a non-monotonic relationship between F0 and water content. The friction coefficient and F0 increase with the velocity in both dry and lubricated conditions in the studied velocity range (0.1–100 m/s). It should be pointed out that the obtained force–displacement relationship is fundamental and can be applied to enhance current inter-particle laws of silica sand in micromechanics-based modeling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press, Oxford

    MATH  Google Scholar 

  2. Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD (2010) Three-dimensional atomic force microscopy - taking surface imaging to the next level. Adv Mater 22(26–27):2838–2853

    Article  Google Scholar 

  3. Baykara MZ, Vazirisereshk MR, Martini A (2018) Emerging superlubricity: a review of the state of the art and perspectives on future research. Appl Phys Rev 5(4):041102

    Article  Google Scholar 

  4. Bouhacina T, Aimé JP, Gauthier S, Michel D, Heroguez V (1997) Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys Rev B 56(12):7694–7703

    Article  Google Scholar 

  5. Buldum A, Leitner DM, Ciraci S (1999) Model for phononic energy dissipation in friction. Phys Rev B 59(24):16042–16046

    Article  Google Scholar 

  6. Büyüköztürk O, Buehler MJ, Lau D, Tuakta C (2011) Structural solution using molecular dynamics: fundamentals and a case study of epoxy-silica interface. Int J Solids Struct 48(14–15):2131–2140

    Article  Google Scholar 

  7. Chen W, Foster AS, Alava MJ, Laurson L (2015) Stick-slip control in nanoscale boundary lubrication by surface wettability. Phys Rev Lett 114(9):095502

    Article  Google Scholar 

  8. Chew K, Chiaro G, Vinod JS, Tasalloti A, Allulakshmi K (2022) Direct shear behavior of gravel-rubber mixtures: discrete element modeling and microscopic investigations. Soils Found 62(3):101156

    Article  Google Scholar 

  9. Derjaguin B (1934) Molekulartheorie der äußeren Reibung. Z Phys 88(9–10):661–675

    Article  MATH  Google Scholar 

  10. Dieterich JH (1978) Time-dependent friction and the mechanics of stick-slip. Pure Appl Geophys 116(4):790–806

    Article  Google Scholar 

  11. Fall A, Weber B, Pakpour M, Lenoir N, Shahidzadeh N et al (2014) Sliding friction on wet and dry sand. Phys Rev Lett 112(17):175502

    Article  Google Scholar 

  12. Flörke O W, Graetsch H A, Brunk F, Benda L, Paschen S, et al. (2008) Silica. Ullmann's Encyclopedia of Indus Chem

  13. Gao S, Yang LH, Gan Y, Chen Q (2021) The influence of sliding speed on the friction behavior of silica surface. ACS Omega 6(4):3384–3389

    Article  Google Scholar 

  14. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M et al (2000) Velocity dependence of atomic friction. Phys Rev Lett 84(6):1172–1175

    Article  Google Scholar 

  15. Grabowski A, Nitka M, Tejchman J (2021) Comparative 3D DEM simulations of sand–structure interfaces with similarly shaped clumps versus spheres with contact moments. Acta Geotech 16(11):3533–3554

    Article  Google Scholar 

  16. Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  17. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38

    Article  Google Scholar 

  18. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, et al. (1999) Steered molecular dynamics. In: computational molecular dynamics: challenges, methods, ideas. Berlin,

  19. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, et al. (1997) Computational molecular dynamics: challenges, methods, ideas. In: The 2nd international symposium on algorithms for macromolecular modelling. Berlin

  20. Jana PK, Chen W, Alava MJ, Laurson L (2018) Nanoscale liquid crystal lubrication controlled by surface structure and film composition. Phys Chem Chem Phys 20(27):18737–18743

    Article  Google Scholar 

  21. Jian W, Tam L-h, Lau D (2018) Atomistic study of interfacial creep behavior in epoxy-silica bilayer system. Compos B Eng 132:229–236

    Article  Google Scholar 

  22. Jin Z, Yin Z-Y, Kotronis P, Li Z (2019) Advanced numerical modelling of caisson foundations in sand to investigate the failure envelope in the H-M-V space. Ocean Eng 190:106394

    Article  Google Scholar 

  23. Johnson DH, Vahedifard F, Peters JF (2021) Macroscale friction of granular soils under monotonic and cyclic loading based upon micromechanical determination of dissipated energy. Acta Geotech 16(10):3027–3039

    Article  Google Scholar 

  24. Karplus M, Lavery R (2014) Significance of molecular dynamics simulations for life sciences. Isr J Chem 54(8–9):1042–1051

    Article  Google Scholar 

  25. Kisiel M, Gnecco E, Gysin U, Marot L, Rast S et al (2011) Suppression of electronic friction on Nb films in the superconducting state. Nat Mater 10(2):119–122

    Article  Google Scholar 

  26. Kitson DH, Hagler AT (1988) Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry 27(14):5246–5257

    Article  Google Scholar 

  27. Krylov SY, Jinesh KB, Valk H, Dienwiebel M, Frenken JWM (2005) Thermally induced suppression of friction at the atomic scale. Phys Rev E 71(6):065101

    Article  Google Scholar 

  28. Kumari N, Mohan C (2021) Basics of clay minerals and their characteristic properties, in clay and clay minerals. IntechOpen 24:1–9

    Google Scholar 

  29. Lau D, Jian W, Yu Z, Hui D (2018) Nano-engineering of construction materials using molecular dynamics simulations: prospects and challenges. Compos B Eng 143:282–291

    Article  Google Scholar 

  30. Lee M, Vink RLC, Volkert CA, Krüger M (2021) Noncontact friction: Role of phonon damping and its nonuniversality. Phys Rev B 104(17):174309

    Article  Google Scholar 

  31. De Leeuw LW, Dietz MS, Milewski H, Mylonakis G, Diambra A (2021) Relationship between texture of polypropylene coatings and interface friction for sand at low stress levels. Can Geotech J 58(12):1884–1897

    Article  Google Scholar 

  32. Li Q, Dong Y, Perez D, Martini A, Carpick RW (2011) Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys Rev Lett 106(12):126101

    Article  Google Scholar 

  33. Li Q, Liu XZ, Kim SP, Shenoy VB, Sheehan PE et al (2014) Fluorination of graphene enhances friction due to increased corrugation. Nano Lett 14(9):5212–5217

    Article  Google Scholar 

  34. Lin R, Wei Z, Chen Y (2020) Effects of commensurability on the friction and energy dissipation in graphene/graphene interface. In: IEEE 15th international conference on nano/micro engineered and molecular system (NEMS)

  35. Martini A, Dong Y, Perez D, Voter AF (2009) Low-speed atomistic simulation of stick-slip friction using parallel replica dynamics. Tribol Lett 36(1):63–68

    Article  Google Scholar 

  36. McGuiggan PM, Zhang J, Hsu SM (2001) Comparison of friction measurements using the atomic force microscope and the surface forces apparatus: the issue of scale. Tribol Lett 10(4):217–223

    Article  Google Scholar 

  37. Mota F, Molla J, Caturla MJ, Ibarra A, Perlado JM (2008) Molecular dynamics study of defect in amorphous silica; generation and migration. J Phys Conf Ser 112(3):032032

    Article  Google Scholar 

  38. Ootani Y, Xu J, Hatano T, Kubo M (2018) Contrasting roles of water at sliding interfaces between silicon-based materials: first-principles molecular dynamics sliding simulations. J Phys Chem C 122(19):10459–10467

    Article  Google Scholar 

  39. Ouyang W, Ramakrishna SN, Rossi A, Urbakh M, Spencer ND et al (2019) Load and velocity dependence of friction mediated by dynamics of interfacial contacts. Phys Rev Lett 123(11):116102

    Article  Google Scholar 

  40. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120:5946–5961

    Article  Google Scholar 

  41. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  MATH  Google Scholar 

  42. RUINA A, (1983) Slip instability and state variable friction laws. J Geophys Res 88:10359–10370

    Article  Google Scholar 

  43. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  44. Schwarz UD, Hölscher H (2016) Exploring and explaining friction with the prandtl-tomlinson model. ACS Nano 10(1):38–41

    Article  Google Scholar 

  45. Sorensen MR, Jacobsen KW, Stoltze P (1996) Simulations of atomic-scale sliding friction. Phys Rev B 53(4):2101–2113

    Article  Google Scholar 

  46. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mat Sci Eng 18(1):015012

    Article  MathSciNet  Google Scholar 

  47. Tam L-h, Jiang J, Yu Z, Orr J, Wu C (2021) Molecular dynamics investigation on the interfacial shear creep between carbon fiber and epoxy matrix. Appl Surf Sci 537:148013

  48. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430(6999):525–528

    Article  Google Scholar 

  49. Vazirisereshk MR, Hasz K, Zhao MQ, Johnson ATC, Carpick RW et al (2020) Nanoscale friction behavior of transition-metal dichalcogenides: role of the chalcogenide. ACS Nano 14(11):16013–16021

    Article  Google Scholar 

  50. Wang P, Yin Z-Y, Zhou W-H, Chen W-b (2022) Micro-mechanical analysis of soil–structure interface behavior under constant normal stiffness condition with DEM. Acta Geotech 17(7):2711–2733

    Article  Google Scholar 

  51. Wei D, Zhang Y (2009) Friction between α-Al2O3(0001) surfaces and the effects of surface hydroxylation. Surf Sci 603(16):L95–L98

    Article  Google Scholar 

  52. Wei P-C, Zhang L-L, Zheng Y-Y, Diao Q-F, Zhuang D-Y et al (2021) Nanoscale friction characteristics of hydrated montmorillonites using molecular dynamics. Appl Clay Sci 210:106155

    Article  Google Scholar 

  53. van Wijk MM, Dienwiebel M, Frenken JWM, Fasolino A (2013) Superlubric to stick-slip sliding of incommensurate graphene flakes on graphite. Phys Rev B 88(23):235438

    Google Scholar 

  54. Wu CD, Lin JF, Fang TH, Lin HY, Chang SH (2008) Effects of a self-assembled monolayer on the sliding friction and adhesion of an Au surface. Appl Phys A 91(3):459–466

    Article  Google Scholar 

  55. Yamataka H (2010) Molecular dynamics simulations and mechanism of organic reactions: non-TST behaviors, in advances in physical organic chemistry. Academic Press, USA

    Google Scholar 

  56. Yaphary YL, Yu Z, Lam RHW, Hui D, Lau D (2017) Molecular dynamics simulations on adhesion of epoxy-silica interface in salt environment. Compos B Eng 131:165–172

    Article  Google Scholar 

  57. Yin Z-Y, Chang CS, Hicher P-Y (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14):1933–1951

    Article  MATH  Google Scholar 

  58. Yoshioka T, Nakata A, Tung K-L, Kanezashi M, Tsuru T (2019) Molecular dynamics simulation study of solid vibration permeation in microporous amorphous silica network voids. Membranes 9(10):132

    Article  Google Scholar 

  59. Zhang Q, Qi Y, Hector LG, Çağın T, Goddard WA (2005) Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α−Al2O3/α−Al2O3 interfaces. Phys Rev B 72(4):045406

    Article  Google Scholar 

  60. Zhang Z, Song X (2022) Nonequilibrium molecular dynamics (NEMD) modeling of nanoscale hydrodynamics of clay-water system at elevated temperature. Int J Numer Anal Methods Geomech 46(5):889–909

    Article  MathSciNet  Google Scholar 

  61. Zhang L-L, Zheng Y-Y, Wei P-C, Diao Q-F, Yin Z-Y (2021) Nanoscale mechanical behavior of kaolinite under uniaxial strain conditions. Appl Clay Sci 201:105961

    Article  Google Scholar 

  62. Zhou S, Vu-Bac N, Arash B, Zhu H, Zhuang X (2019) Interface characterization between polyethylene/ silica in engineered cementitious composites by molecular dynamics simulation. Molecules 24(8):1497

    Article  Google Scholar 

  63. Zhu P, Li R (2018) Study of nanoscale friction behaviors of graphene on gold substrates using molecular dynamics. Nanoscale Res Lett 13(1):34

    Article  Google Scholar 

  64. Zhu L, Shen W, Shao J, He M (2021) Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. Int J Rock Mech Min Sci 138:104589

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No.: 15217220, N_PolyU534/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yuan Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, WQ., Yin, ZY. & Zheng, YY. Investigating silica interface rate-dependent friction behavior under dry and lubricated conditions with molecular dynamics. Acta Geotech. 18, 3543–3554 (2023). https://doi.org/10.1007/s11440-022-01792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01792-2

Keywords

Navigation