Skip to main content
Log in

Multiscale analysis of rotational penetration in shallow dry sand and implications for self-burrowing robot design

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In nature, seeds of some flowering plants such as Erodium and Pelargonium can bury themselves into the ground effectively for germination. Jung et al. (Phys Fluids 29:041702. https://doi.org/10.1063/1.4979998, 2017) hypothesized that rotation induced by the hygroscopic coiling and uncoiling movement of the awn reduces the penetration resistance. Rotational penetration was also studied in geotechnical engineering, as it is relevant to the rotary installation of piles. However, there are limited fundamental explanations of the effect of rotation on the reduction of penetration resistance. In this study, shallow rotational penetration in dry sand is studied using the discrete element method (DEM); the directly available particle-scale data and the derived meso-scale data were analyzed to reveal the underlying mechanism of the rotational effect on penetration. A series of rotational penetration tests with different rotational speeds were conducted. It was confirmed that the penetration resistance at the cone decreases with rotational speed. Analysis of the particle–cone contact data shows that rotation does not only result in the inclination of the contact forces, but also significantly reduces their magnitude and the overall contact number. The force chain network, displacement fields and particle trajectories visualize the rotational effects at the particle-scale; and the evolution of the principal stresses of the soil provides a meso-scale explanation. The new multi-scale data tested the “force chain breakage” hypothesis and challenged the assumptions previously used in developing analytical models. Insights were also provided to power consumption and implications on the design of a self-burrowing robot, which could take advantage of the rotational effect on penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Semi-angle of the cone (°)

\(\alpha_{s}\) :

Shear to normal stiffness ratio

\(\beta\) :

Rolling stiffness coefficient

\(\delta\) :

Angle of soil–penetrator friction (°)

\(\eta\) :

Plastic moment coefficient

\(\theta_{i}\) :

The contact angle between the positive \(z\) axis and the contact force at contact \(i\) (°)

\(\theta_{{\text{r}}}\) :

Rotational angle between two contacting particles (°)

\(\theta\) :

The contact angle between the positive \(z\) axis and the resultant contact force on the cone (°)

\(\vartheta\) :

Rotational angle of the shear stress (°)

\(\omega\) :

Rotational velocity (radian/s)

\(n\) :

Sample initial porosity

\(\sigma\) :

Stress normal to the cone surface (kPa)

\(c_{{\text{a}}}\) :

Soil–penetrator adhesion (kPa)

\({\text{CN}}\) :

Contact number

\(D_{{\text{c}}}\) :

Diameter of the cone (m)

\(D_{{\text{s}}}\) :

Diameter of the shaft (m)

\(F\) :

Total contact force on the penetrator (N)

\(\parallel F_{{\text{n}}} \parallel\) :

Normal value of the normal contact force (N)

\(F_{{\text{z}}}\) :

The vertical component of the total contact force on the penetrator (N)

\(F_{{{\text{zn}}}}\) :

Vertical component of the total contact normal force on the penetrator (N)

\(F_{{{\text{zt}}}}\) :

Vertical component of the total contact shear force on the penetrator (N)

\(F_{{{\text{z}}i}}\) :

Individual contact forces on the penetrator (N)

\(F_{{{\text{zc}}}}\) :

Vertical component of the total contact normal force on the cone (N)

\(F_{{{\text{zs}}}}\) :

Vertical component of the total contact shear force on the shaft (N)

\(F_{{{\text{zn}}i}}\), \(F_{{{\text{zt}}i}}\) :

Vertical components of the individual contact normal forces and that of the contact shear forces (N)

\(F_{{{\text{znc}}}}\), \(F_{{{\text{ztc}}}}\) :

Vertical component of the contact normal force and contact shear force on the cone (N)

\(H_{{\text{s}}}\) :

Height of the shaft (m)

\(k_{{\text{r}}}\) :

Rolling stiffness coefficient

\(k_{{\text{s}}}\) :

Tangential (shear) contact stiffness (kPa)

\(M_{{\text{e}}}\) :

Elastic contact moment (N m)

\(M_{{\text{p}}}\) :

Plastic contact moment (N m)

\(n_{p}\) :

Cone-to-particle diameter ratio

\(P\) :

Power (W)

\(q_{{\text{c}}}\) :

Cone penetration resistance (kPa)

\(q_{{{\text{cmax}}}}\) :

Non-rotational cone penetration resistance at the maximum penetration depth (kPa)

\(q_{{{\text{cRot}}}}\) :

Rotational cone penetration resistance (kPa)

\(Q\) :

Vertical penetration force (N)

\(Q_{{\text{c}}}\), \(Q_{{\text{s}}}\) :

(Vertical components of) the penetration force acting on the cone and shaft (N)

\(r_{{\text{a}}}\), \(r_{{\text{b}}}\) :

Radii for two contacting particles (m)

\(r_{{\text{d}}}\) :

Chamber-to-cone diameter ratio

\(R\) :

Radius of the cone (m)

\(T\) :

Penetration torque or the total contact torque on the penetrator (N m)

\(T_{{\text{p}}}\) :

Rotational period (s)

\(T_{{\text{z}}}\) :

The vertical component of the total contact torque (N m)

\(T_{{{\text{zc}}}}\), \(T_{{{\text{zs}}}}\) :

Vertical components of the torque on the cone and shaft (N m)

\(u\) :

Relative slip velocity

\(v_{{\text{p}}}\) :

Vertical penetration velocity (m/s)

\(v_{{\text{s}}}\) :

Tangential velocity (m/s)

References

  1. Abraham Y, Elbaum R (2013) Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending. New Phytol 199:584–594. https://doi.org/10.1111/nph.12254

    Article  Google Scholar 

  2. Abraham Y, Tamburu C, Klein E, Dunlop JWC, Fratzl P, Raviv U, Elbaum R (2012) Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J R Soc Interface 9:640–647. https://doi.org/10.1098/rsif.2011.0395

    Article  Google Scholar 

  3. Ansell AD, Trueman ER (1967) Burrowing in Mercenaria Mercenaria (L.) (Bivalvia, Veneridae). J Exp Biol 46:105–115. https://doi.org/10.1242/jeb.46.1.105

    Article  Google Scholar 

  4. Arroyo M, Butlanska J, Gens A, Calvetti F, Jamiolkowski M (2011) Cone penetration tests in a virtual calibration chamber. Geotechnique 61:525–531. https://doi.org/10.1680/geot.9.P.067

    Article  Google Scholar 

  5. Badanagki M (2020) Centrifuge modeling of dense granular columns in layered liquefiable soils with varying stratigraphy and overlying structures. In: PhD thesis, University of Colorado at Boulder

  6. Belheine N, Plassiard J-P, Donzé F-V, Darve F, Seridi A (2009) Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput Geotech 36:320–331. https://doi.org/10.1016/j.compgeo.2008.02.003

    Article  Google Scholar 

  7. Bengough AG, Mullins CE, Wilson G (1997) Estimating soil frictional resistance to metal probes and its relevance to the penetration of soil by roots. Eur J Soil Sci 48:603–612. https://doi.org/10.1111/j.1365-2389.1997.tb00560.x

    Article  Google Scholar 

  8. Borela R, Frost JD, Viggiani G, Anselmucci F (2021) Earthworm-inspired robotic locomotion in sand: an experimental study with X-ray tomography. Géotechnique Lett 11:66–73. https://doi.org/10.1680/jgele.20.00085

    Article  Google Scholar 

  9. Butlanska J (2014) Cone penetration test in a virtual calibration chamber. In: TDX (Tesis Doctorals en Xarxa)

  10. Butlanska J, Arroyo M, Gens A (2010) Size effects on a virtual calibration chamber. In: Numerical methods in geotechnical engineering. CRC Press, Hoboken

  11. Chen Y, Khosravi A, Martinez A, DeJong J (2021) Modeling the self-penetration process of a bio-inspired probe in granular soils. Bioinspir Biomim 16:046012. https://doi.org/10.1088/1748-3190/abf46e

    Article  Google Scholar 

  12. Chen RP, Tang LJ, Ling DS, Chen YM (2011) Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method. Comput Geotech 38:187–195. https://doi.org/10.1016/j.compgeo.2010.11.003

    Article  Google Scholar 

  13. Ciantia MO, O’Sullivan C, Jardine RJ (2019) Pile penetration in crushable soils: insights from micromechanical modelling. In: Proceedings of the XVII ECSMGE-2019 5247–5266. https://doi.org/10.32075/17ECSMGE-2019-1111

  14. Cui L, O’Sullivan C (2006) Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Geotechnique 56:455–468. https://doi.org/10.1680/geot.56.7.455

    Article  Google Scholar 

  15. Darbois Texier B, Ibarra A, Melo F (2017) Helical locomotion in a granular medium. Phys Rev Lett 119:068003. https://doi.org/10.1103/PhysRevLett.119.068003

    Article  Google Scholar 

  16. Deeks AD (2008) An investigation into the strength and stiffness of jacked piles in sand. PhD thesis, University of Cambridge

  17. Dorgan KM (2015) The biomechanics of burrowing and boring. J Exp Biol 218:176–183. https://doi.org/10.1242/jeb.086983

    Article  Google Scholar 

  18. Del Dottore E, Mondini A, Sadeghi A, Mattoli V, Mazzolai B (2017) An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements. Bioinspir Biomim 13:015003. https://doi.org/10.1088/1748-3190/aa9998

    Article  Google Scholar 

  19. Elbaum R, Abraham Y (2014) Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Sci 223:124–133. https://doi.org/10.1016/j.plantsci.2014.03.014

    Article  Google Scholar 

  20. Elbaum R, Gorb S, Fratzl P (2008) Structures in the cell wall that enable hygroscopic movement of wheat awns. J Struct Biol 164:101–107. https://doi.org/10.1016/j.jsb.2008.06.008

    Article  Google Scholar 

  21. Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886. https://doi.org/10.1126/science.1140097

    Article  Google Scholar 

  22. Evangelista D, Hotton S, Dumais J (2011) The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae ). J Exp Biol 214:521–529. https://doi.org/10.1242/jeb.050567

    Article  Google Scholar 

  23. Greicius T (2020) NASA’s mars InSight lander to push on top of the ‘mole’. http://www.nasa.gov/feature/jpl/nasas-mars-insight-lander-to-push-on-top-of-the-mole

  24. Gu M, Han J, Zhao M (2017) Three-dimensional discrete-element method analysis of stresses and deformations of a single geogrid-encased stone column. Int J Geomech 17:04017070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000952

    Article  Google Scholar 

  25. Huang S, Tao J (2022) Bioinspired horizontal self-burrowing robot. Charlotte, NC

  26. Huang S, Tao J (2020) Modeling clam-inspired burrowing in dry sand using cavity expansion theory and DEM. Acta Geotech 15:2305–2326. https://doi.org/10.1007/s11440-020-00918-8

    Article  Google Scholar 

  27. Jerier J-F, Imbault D, Donze F-V, Doremus P (2009) A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing. Granul Matter 11:43–52. https://doi.org/10.1007/s10035-008-0116-0

    Article  MATH  Google Scholar 

  28. Jiang M, Dai Y, Cui L, Shen Z, Wang X (2014) Investigating mechanism of inclined CPT in granular ground using DEM. Granul Matter 16:785–796. https://doi.org/10.1007/s10035-014-0508-2

    Article  Google Scholar 

  29. Jing X-Y, Zhou W-H, Zhu H-X, Yin Z-Y, Li Y (2018) Analysis of soil-structural interface behavior using three-dimensional DEM simulations. Int J Numer Anal Meth Geomech 42:339–357. https://doi.org/10.1002/nag.2745

    Article  Google Scholar 

  30. Jung W, Choi SM, Kim W, Kim H-Y (2017) Reduction of granular drag inspired by self-burrowing rotary seeds. Phys Fluids 29:041702. https://doi.org/10.1063/1.4979998

    Article  Google Scholar 

  31. Jung W, Kim W, Kim H-Y (2014) Self-burial mechanics of hygroscopically responsive awns. Integr Comp Biol 54:1034–1042. https://doi.org/10.1093/icb/icu026

    Article  Google Scholar 

  32. Kang C, Chan D (2018) Numerical simulation of 2D granular flow entrainment using DEM. Granul Matter 20:13. https://doi.org/10.1007/s10035-017-0782-x

    Article  Google Scholar 

  33. Khosravi A, Martinez A, DeJong JT (2020) Discrete element model (DEM) simulations of cone penetration test (CPT) measurements and soil classification. Can Geotech J 57:1369–1387. https://doi.org/10.1139/cgj-2019-0512

    Article  Google Scholar 

  34. Li L, Wu W, Hesham El Naggar M, Mei G, Liang R (2019) DEM analysis of the sand plug behavior during the installation process of open-ended pile. Comput Geotech 109:23–33. https://doi.org/10.1016/j.compgeo.2019.01.014

    Article  Google Scholar 

  35. Lu Y, Frost D (2010) Three-dimensional DEM modeling of triaxial compression of sands. In: Soil behavior and geo-micromechanics. American Society of Civil Engineers, Shanghai, China, pp 220–226

  36. Ma Y, Evans TM, Cortes DD (2020) 2D DEM analysis of the interactions between bio-inspired geo-probe and soil during inflation–deflation cycles. Granul Matter 22:11. https://doi.org/10.1007/s10035-019-0974-7

    Article  Google Scholar 

  37. Maladen RD, Ding Y, Li C, Goldman DI (2009) Undulatory swimming in sand: subsurface locomotion of the Sandfish lizard. Science 325:314–318

    Article  Google Scholar 

  38. Maladen RD, Ding Y, Umbanhowar PB, Kamor A, Goldman DI (2011) Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J R Soc Interface. https://doi.org/10.1098/rsif.2010.0678

    Article  Google Scholar 

  39. Martinez A, Dejong J, Akin I, Aleali A, Arson C, Atkinson J, Bandini P, Baser T, Borela R, Boulanger R, Burrall M, Chen Y, Collins C, Cortes D, Dai S, Dejong T, Del Dottore E, Dorgan K, Fragaszy R, Frost JD, Full R, Ghayoomi M, Goldman DI, Gravish N, Guzman IL, Hambleton J, Hawkes E, Helms M, Hu D, Huang L, Huang S, Hunt C, Irschick D, Lin HT, Lingwall B, Marr A, Mazzolai B, Mcinroe B, Murthy T, O’hara K, Porter M, Sadek S, Sanchez M, Santamarina C, Shao L, Sharp J, Stuart H, Stutz HH, Summers A, Tao J, Tolley M, Treers L, Turnbull K, Valdes R, PAassenL vanViggiani G, Wilson D, Wu W, Yu X, Zheng J (2021) Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Géotechnique. https://doi.org/10.1680/jgeot.20.P.170

    Article  Google Scholar 

  40. Mazzolai B, Meloni G, Degl’Innocenti A (2017) Can a robot grow? Plants give us the answer. In: Bioinspiration, Biomimetics, and Bioreplication 2017. SPIE, pp 24–33

  41. Migliaccio F, Tassone P, Fortunati A (2013) Circumnutation as an autonomous root movement in plants. Am J Bot 100:4–13. https://doi.org/10.3732/ajb.1200314

    Article  Google Scholar 

  42. Minh NH, Cheng YP, Thornton C (2014) Strong force networks in granular mixtures. Granul Matter 16:69–78. https://doi.org/10.1007/s10035-013-0455-3

    Article  Google Scholar 

  43. Naclerio ND, Hubicki CM, Aydin YO, Goldman DI, Hawkes EW (2018) Soft robotic burrowing device with tip-extension and granular fluidization. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5918–5923

  44. Plassiard J-P, Belheine N, Donzé F-V (2007) Calibration procedure for spherical discrete elements using a local moment law, pp 8

  45. Quillin KJ (2000) Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J Exp Biol 203:2757–2770. https://doi.org/10.1242/jeb.203.18.2757

    Article  Google Scholar 

  46. Sadeghi A, Tonazzini A, Popova L, Mazzolai B (2014) A novel growing device inspired by plant root soil penetration behaviors. PLoS ONE 9:e90139. https://doi.org/10.1371/journal.pone.0090139

    Article  Google Scholar 

  47. Sharif YU, Brown MJ, Ciantia MO, Cerfontaine B, Davidson C, Knappett J, Meijer GJ, Ball J (2021) Using discrete element method (DEM) to create a cone penetration test (CPT)-based method to estimate the installation requirements of rotary-installed piles in sand. Can Geotech J 58:919–935. https://doi.org/10.1139/cgj-2020-0017

    Article  Google Scholar 

  48. Shi D, Yang Y, Deng Y, Xue J (2019) DEM modelling of screw pile penetration in loose granular assemblies considering the effect of drilling velocity ratio. Granul Matter 21:74. https://doi.org/10.1007/s10035-019-0933-3

    Article  Google Scholar 

  49. Smilauer V, Angelidakis V, Catalano E, Caulk R, Chareyre B, Chèvremont W, Dorofeenko S, Duriez J, Dyck N, Elias J, Er B, Eulitz A, Gladky A, Guo N, Jakob C, Kneib F, Kozicki J, Marzougui D, Maurin R, Modenese C, Pekmezi G, Scholtès L, Sibille L, Stransky J, Sweijen T, Thoeni K, Yuan C (2021) Yade. Documentation. https://doi.org/10.5281/ZENODO.5705394

  50. Stamp NE (1984) Self-burial behaviour of Erodium cicutarium seeds. J Ecol 72:611–620. https://doi.org/10.2307/2260070

    Article  Google Scholar 

  51. Steendam C, Verhelst P, Van Wassenbergh S, De Meyer J (2020) Burrowing behaviour of the European eel (Anguilla anguilla): effects of life stage. J Fish Biol 97:1332–1342. https://doi.org/10.1111/jfb.14481

    Article  Google Scholar 

  52. Tang Y, Huang S, Tao J (2020) Effect of rotation on seeds’ self-burial process: insights from DEM simulations. In: Geo-Congress 2020. American Society of Civil Engineers, Minneapolis, Minnesota, pp 293–301

  53. Tao J (2021) Burrowing soft robots break new ground. Sci Robot- 6:3615. https://doi.org/10.1126/scirobotics.abj3615

    Article  Google Scholar 

  54. Tao J, Huang S, Tang Y (2020) SBOR: a minimalistic soft self-burrowing-out robot inspired by razor clams. Bioinspir Biomim 15:055003. https://doi.org/10.1088/1748-3190/ab8754

    Article  Google Scholar 

  55. Trueman ER (1966) The mechanism of burrowing in the polychaete worm, Arenicola marina (L.). Biol Bull 131:369–377. https://doi.org/10.2307/1539763

    Article  Google Scholar 

  56. Trueman ER, Brand AR, Davis P (1966) The dynamics of burrowing of some common littoral bivalves. J Exp Biol 44:469–492. https://doi.org/10.1242/jeb.44.3.469

    Article  Google Scholar 

  57. Trueman ER, Yonge M (1967) The dynamics of burrowing in Ensis (Bivalvia). Proc R Soc Lond B 166:459–476. https://doi.org/10.1098/rspb.1967.0007

    Article  Google Scholar 

  58. Vasko A (2020) An investigation into the behavior of ottawa sand through monotonic and cyclic shear tests. M.S., The George Washington University

  59. Wensrich CM, Katterfeld A, Sugo D (2014) Characterisation of the effects of particle shape using a normalised contact eccentricity. Granul Matter 16:327–337. https://doi.org/10.1007/s10035-013-0465-1

    Article  Google Scholar 

  60. WinterDeits AGRLHV, Dorsch DS, Slocum AH, Hosoi AE (2014) Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspir Biomim 9:036009. https://doi.org/10.1088/1748-3182/9/3/036009

    Article  Google Scholar 

  61. Yang P, O’Donnell S, Hamdan N, Kavazanjian E, Neithalath N (2017) 3D DEM simulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation. Int J Geomech 17:04016143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000848

    Article  Google Scholar 

  62. Zhong W, Liu H, Wang Q, Zhang W, Li Y, Ding X, Chen L (2021) Investigation of the penetration characteristics of snake skin-inspired pile using DEM. Acta Geotech 16:1849–1865. https://doi.org/10.1007/s11440-020-01132-2

    Article  Google Scholar 

  63. Zhou W, Yang L, Ma G, Xu K, Lai Z, Chang X (2017) DEM modeling of shear bands in crushable and irregularly shaped granular materials. Granul Matter 19:25. https://doi.org/10.1007/s10035-017-0712-y

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (NSF) under NSF CMMI 1849674 and CMMI 1841574. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF. We also would like to thank the anonymous reviewers whose constructive comments helped us improve the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Tao, J. Multiscale analysis of rotational penetration in shallow dry sand and implications for self-burrowing robot design. Acta Geotech. 17, 4233–4252 (2022). https://doi.org/10.1007/s11440-022-01492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01492-x

Keywords

Navigation