Skip to main content

Advertisement

Log in

Long-term thermo-mechanical behavior of energy pile in dry sand

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A small-scale pile has been developed in the laboratory to investigate the thermo-mechanical behavior of energy piles subjected to a significant number of thermal cycles. The pile (20 mm external diameter), installed in dry sand, was initially loaded at its head to 0, 20, 40 and 60% of its ultimate bearing capacity (500 N). At the end of each loading step, 30 heating/cooling cycles were applied. The long-term behavior of the pile was observed in terms of head settlement, axial force profile, soil and pile temperature, and stress in soil. The results evidence the irreversible settlement of the pile head induced by thermal cycles under constant load head. In addition, the incremental irreversible settlement that accumulates after each thermal cycle decreases when the number of cycles increases. The evolution of irreversible pile head settlement versus number of cycles can be reasonably predicted by an asymptotic equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59:229–236

    Article  Google Scholar 

  2. Akrouch GA, Sánchez M, Briaud J-L (2014) Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech 9(3):399–412. doi:10.1007/s11440-014-0312-5

    Article  Google Scholar 

  3. Amatya BL, Soga K, Bourne-Webb PJ et al (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62:503–519. doi:10.1680/geot.10.P.116

    Article  Google Scholar 

  4. Bourne-Webb PJ, Amatya B, Soga K et al (2009) Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59:237–248. doi:10.1680/geot.2009.59.3.237

    Article  Google Scholar 

  5. Brandl H (2006) Energy foundations and other thermo-active ground structures. Géotechnique 56:81–122. doi:10.1680/geot.2006.56.2.81

    Article  Google Scholar 

  6. Di Donna A, Laloui L (2015) Numerical analysis of the geotechnical behaviour of energy piles. Int J Numer Anal Methods Geomech 39:861–888. doi:10.1002/nag.2341

    Article  Google Scholar 

  7. Di Donna A, Rotta Loria AF, Laloui L (2016) Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads. Comput Geotech 72:126–142. doi:10.1016/j.compgeo.2015.11.010

    Article  Google Scholar 

  8. Dupray F, Laloui L, Kazangba A (2014) Computers and geotechnics numerical analysis of seasonal heat storage in an energy pile foundation. Comput Geotech 55:67–77. doi:10.1016/j.compgeo.2013.08.004

    Article  Google Scholar 

  9. Fityus S (2003) Behaviour of a model footing on expansive clay. In: Proceedings of UNSAT Asia 2003, 2nd Asian unsaturated soils conference, Osaka, pp 181–186

  10. Jeong S, Lim H, Lee JK, Kim J (2014) Thermally induced mechanical response of energy piles in axially loaded pile groups. Appl Therm Eng 71:608–615. doi:10.1016/j.applthermaleng.2014.07.007

    Article  Google Scholar 

  11. Kalantidou A, Tang AM, Pereira J-M, Hassen G (2012) Preliminary study on the mechanical behaviour of heat exchanger pile in physical model. Géotechnique 62:1047–1051. doi:10.1680/geot.11.T.013

    Article  Google Scholar 

  12. Laloui L, Nuth M (2006) Numerical modeling of some features of heat exchanger pile. Geotech Spec Publ 153:189. doi:10.1061/40865(197)24

    Google Scholar 

  13. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Methods Geomech 30:763–781. doi:10.1002/nag.499

    Article  Google Scholar 

  14. Lam SY, Ng CWW, Leung CF, Chan SH (2009) Centrifuge and numerical modeling of axial load effects on piles in consolidating ground. Can Geotech J 46:10–24. doi:10.1139/T08-095

    Article  Google Scholar 

  15. Loria AFR, Di Donna A, Ph D, Laloui L (2015) Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles. J Geotech Geoenviron Eng 141:04015042. doi:10.1061/(ASCE)GT

    Article  Google Scholar 

  16. Mayne PW, Kulhawy FH (1982) K0–OCR relationships in soil. J Geotech Eng Div 108:851–872

    Google Scholar 

  17. McCartney JS, Murphy KD (2012) Strain distributions in full-scale energy foundations (DFI young professor paper competition 2012). DFI J J Deep Found Inst 6:26–38. doi:10.1179/dfi.2012.008

    Article  Google Scholar 

  18. McCartney JS, Rosenberg JE (2011) Impact of heat exchange on side shear in thermo-active foundations. In: Geo-Frontiers 2011, American Society of Civil Engineers, vol 211, pp 488-498. doi:10.1061/41165(397)51

  19. Mimouni T, Laloui L (2014) Towards a secure basis for the design of geothermal piles. Acta Geotech 9:355–366. doi:10.1007/s11440-013-0245-4

    Article  Google Scholar 

  20. Mimouni T, Laloui L (2015) Behaviour of a group of energy piles. Can Geotech J 52:1913–1929. doi:10.1139/cgj-2014-0403

    Article  Google Scholar 

  21. Murphy KD, McCartney JS (2014) Seasonal response of energy foundations during building operation. Geotech Geol Eng 33(2):343–356. doi:10.1007/s10706-014-9802-3

    Article  Google Scholar 

  22. Murphy KD, McCartney JS, Henry KS (2014) Thermo-mechanical characterization of a full-scale energy foundation. In: Geo-Congress 2014, Atlanta, pp 617–628. doi:10.1061/9780784413265.050

  23. Murphy KD, McCartney JS, Henry KS (2014) Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations. Acta Geotech 10:179–195. doi:10.1007/s11440-013-0298-4

    Article  Google Scholar 

  24. AFNOR (1999) Sols: reconnaissance et essais - Essai statique de pieu isolé sous un effort axial - Partie 1: en compression. NF P94-150-1

  25. Ng CWW, Shi C, Gunawan A, Laloui L (2014) Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay. Géotech Lett 4:310–316. doi:10.1680/geolett.14.00063

    Article  Google Scholar 

  26. Ng CWW, Shi C, Gunawan A et al (2014) Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can Geotech J 52:1045–1057. doi:10.1139/cgj-2014-0301

    Article  Google Scholar 

  27. Ng CWW, Ma QJ, Gunawan A (2016) Horizontal stress change of energy piles subjected to thermal cycles in sand. Comput Geotech 78:54–61. doi:10.1016/j.compgeo.2016.05.003

    Article  Google Scholar 

  28. Olgun CG, Ozudogru TY, Abdelaziz SL, Senol A (2015) Long-term performance of heat exchanger piles. Acta Geotech 10:553–569. doi:10.1007/s11440-014-0334-z

    Article  Google Scholar 

  29. Pasten C, Santamarina JC (2014) Thermally induced long-term displacement of thermoactive piles. J Geotech Geoenviron Eng 140:06014003. doi:10.1061/(ASCE)GT.1943-5606.0001092

    Article  Google Scholar 

  30. Saggu R, Chakraborty T (2015) Cyclic thermo-mechanical analysis of energy piles in sand. Geotech Geol Eng 33:321–342. doi:10.1007/s10706-014-9798-8

    Article  Google Scholar 

  31. Salciarini D, Ronchi F, Cattoni E, Tamagnini C (2015) Thermomechanical effects induced by energy piles operation in a small piled raft. Int J Geomech 15:04014042. doi:10.1061/(ASCE)GM.1943-5622.0000375

    Article  Google Scholar 

  32. Stewart MA, McCartney JS (2013) Centrifuge modeling of soil-structure interaction in energy foundations. J Geotech Geoenviron Eng 140:04013044. doi:10.1061/(ASCE)GT.1943-5606.0001061

    Article  Google Scholar 

  33. Stewart MA, Asce SM, Mccartney JS et al (2014) Centrifuge modeling of soil-structure interaction in energy foundations. J Geotech Geoenviron Eng 140:04013044. doi:10.1061/(ASCE)GT.1943-5606.0001061

    Article  Google Scholar 

  34. Suryatriyastuti ME, Mroueh H, Burlon S (2014) A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput Geotech 55:378–391. doi:10.1016/j.compgeo.2013.09.021

    Article  Google Scholar 

  35. Vargas WL, McCarthy JJ (2007) Thermal expansion effects and heat conduction in granular materials. Phys Rev E Stat Nonlinear Soft Matter Phys 76:1–8. doi:10.1103/PhysRevE.76.041301

    Article  Google Scholar 

  36. Vieira A, Maranha JR (2016) Thermoplastic analysis of a thermoactive pile in a normally consolidated clay. Int J Geomech 17:04016030. doi:10.1061/(ASCE)GM.1943-5622.0000666

    Article  Google Scholar 

  37. Wang B, Bouazza A, Singh RM et al (2014) Posttemperature effects on shaft capacity of a full-scale geothermal energy pile. J Geotechnol Geoenviron Eng 141:04014125. doi:10.1061/(ASCE)GT.1943-5606.0001266

    Article  Google Scholar 

  38. Wang W, Regueiro RA, McCartney JS (2015) Coupled axissymmetric thermo-poro-elasto-plastic finite element analysis of energy foundation centrifuge experiments in partially saturated silt. Geotech Geol Eng 33:373–388. doi:10.1007/s10706-014-9801-4

    Article  Google Scholar 

  39. Yavari N, Tang AM, Pereira J-M, Hassen G (2013) A simple method for numerical modelling of mechanical behaviour of an energy pile. Géotech Lett 4:119–124. doi:10.1680/geolett.13.00053

    Article  Google Scholar 

  40. Yavari N, Tang AM, Pereira J-M, Hassen G (2014) Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech 9:385–398. doi:10.1007/s11440-014-0310-7

    Article  Google Scholar 

  41. Yavari N, Tang AM, Pereira J-M, Hassen G (2016) Mechanical behaviour of a small-scale energy pile in saturated clay. Géotechnique 66:878–887. doi:10.1680/geot/15-7-026

    Article  Google Scholar 

  42. Yavari N, Tang AM, Pereira J-M, Hassen G (2016) Effect of temperature on the shear strength of soils and soil/structure interface. Can Geotech J 53:1186–1194. doi:10.1139/cgj-2015-0355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Minh Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Tang, A.M. & Pereira, JM. Long-term thermo-mechanical behavior of energy pile in dry sand. Acta Geotech. 12, 729–737 (2017). https://doi.org/10.1007/s11440-017-0539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0539-z

Keywords

Navigation