Skip to main content
Log in

Probabilistic stability assessment using adaptive limit analysis and random fields

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

For deterministic scenarios, adaptive finite element limit analysis has been successfully employed to achieve tight bounds on the ultimate load of a geotechnical structure in a much more efficient manner than a dense uniform mesh. However, no probabilistic studies have so far considered finite element limit analysis with adaptive remeshing. Therefore, this research explores the benefits of combining adaptive mesh refinement with finite element limit analysis for probabilistic applications. The outcomes indicate that in order to achieve tight bounds on probabilistic results (such as the probability of failure), the ultimate load in each individual simulation (e.g. factor of safety or bearing capacity) has to be estimated with a very high level of accuracy and this can be achieved more economically using adaptive mesh refinement. The benefits, assessed here for undrained conditions, are expected to be much more pronounced in the case of frictional soils and complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Equilibrium matrix

B :

Footing width

c u :

Undrained soil shear strength

e :

Error estimate

\(e_{{\mu_{Nc} }}\) :

Error in the mean bearing capacity factor

\(e_{{p_f }}\) :

Error in the probability of failure

\(e_{{\mu_{_{FS}} }}\) :

Error in the mean factor of safety

f :

Yield function

FS :

Factor of safety

H :

Slope height

N c :

Bearing capacity factor

N c,det :

Deterministic bearing capacity factor

n sim :

Number of Monte Carlo simulations

p 0 :

Constant part of the external load

p :

External load proportional to the load multiplier α

p f :

Probability of failure

α :

Load multiplier

γ :

Unit weight of soil

θ :

Actual spatial correlation length (in units of length)

Θ:

Dimensionless spatial correlation length

\(\mu_{{c_{u} }}\) :

Mean value of undrained shear strength

\(\mu_{FS}\) :

Mean factor of safety

\(\mu_{N_{c} }\) :

Mean bearing capacity factor

\(\nu_{c_{u}}\) :

Coefficient of variation in the undrained shear strength

\(\nu_{{N_{c} }}\) :

Coefficient of variation in the bearing capacity factor

ρ :

Correlation function

\(\sigma_{{c_{u} }}\) :

Standard deviation in the undrained shear strength

\(\sigma_{{N_{c} }}\) :

Standard deviation in the bearing capacity factor

σ :

Vector of stresses

References

  1. Al-Bittar T, Soubra AH (2013) Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion. Int J Numer Anal Meth Geomech 37(13):2039–2060

    Article  Google Scholar 

  2. Borges L, Zouain N, Costa C, Feijóo R (2001) An adaptive approach to limit analysis. Int J Solids Struct 38(10–13):1707–1720

    Article  MATH  Google Scholar 

  3. Cassidy MJ, Uzielli M, Tian Y (2013) Probabilistic combined loading failure envelopes of a strip footing on spatially variable soil. Comput Geotech 49:191–205

    Article  Google Scholar 

  4. Fenton GA, Griffiths DV (2000) Bearing capacity of spatially random soils. In: 8th ASCE specialty conference on probabilistic mechanics and structural reliability. University of Notre Dame, Notre Dame, Indiana, USA

  5. Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, New York

    Book  Google Scholar 

  6. Fenton GA, MA Hicks, Wang X, Griffiths DV (2013) Effect of slope height and gradient on failure probability. In: Geo-Congress 2013. San Diego, California, United States. Wiley, New York

  7. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  8. Griffiths DV, Fenton GA (2000) Influence of soil strength spatial variability on the stability of an undrained clay slope by finite elements. In: Slope stability 2000. ASCE, pp 184–193

  9. Griffiths DV, Fenton GA (2001) Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Géotechnique 51:351–359

    Article  Google Scholar 

  10. Griffiths DV, Fenton GA, Manoharan N (2002) Bearing capacity of rough rigid strip footing on cohesive soil: probabilistic study. J Geotech Geoenvironmental Eng 128(9):743–755

    Article  Google Scholar 

  11. Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenvironmental Eng 130(5):507–518

    Article  Google Scholar 

  12. Griffiths DV, Fenton GA, Manoharan N (2006) Undrained bearing capacity of two-strip footings on spatially random soil. Int J Geomech 6(6):421–427

    Article  Google Scholar 

  13. Griffiths DV, Fenton GA, Denavit MD (2007) Traditional and advanced probabilistic slope stability analysis. In: Probabilistic applications in geotechnical engineering. American Society of Civil Engineers, pp 1–10

  14. Griffiths DV, Huang J, Fenton GA (2009) Influence of spatial variability on slope reliability using 2-D random fields. J Geotech Geoenvironmental Eng 135(10):1367–1378

    Article  Google Scholar 

  15. Hicks MA, Samy K (2004) Stochastic evaluation of heterogeneous slope stability. Ital Geotech J 38(2):54–66

    Google Scholar 

  16. Hoeksema RJ, Kitanidis PK (1985) Analysis of the spatial structure of properties of selected aquifers. Water Resour Res 21(4):563–572

    Article  Google Scholar 

  17. Huang J, Griffiths DV, Fenton GA (2010) System reliability of slopes by RFEM. Soils Found 50(3):343–353

    Article  Google Scholar 

  18. Huang J, Griffiths DV, Fenton GA (2013) A benchmark slope for system reliability analysis. In: Meehan C et al (eds) Geo-Congress 2013. ASCE: San Diego, California, USA, pp 962–971

  19. Huang J, Lyamin AV, Griffiths DV, Krabbenhøft K, Sloan SW (2013) Quantitative risk assessment of landslide by limit analysis and random fields. Comput Geotech 53:60–67

    Article  Google Scholar 

  20. Huang J, Lyamin AV, Griffiths DV, Sloan SW, Krabbenhøft K, Fenton GA (2013) Undrained bearing capacity of spatially random clays by finite elements and limit analysis. In: 18th International conference on soil mechanics and geotechnical engineering. 2013. Paris

  21. Kasama K, Zen K (2010) The reliability assessment for slope stability considering the spatial variability of soil strength using random field numerical limit analyses. J Soc Mater Sci J 59(5):336–341

    Article  Google Scholar 

  22. Kasama K, Whittle A (2011) Bearing capacity of spatially random cohesive soil using numerical limit analyses. J Geotech Geoenvironmental Eng 137(11):989–996

    Article  Google Scholar 

  23. Krabbenhøft K, Lyamin AV, Hjiaj M, Sloan SW (2005) A new discontinuous upper bound limit analysis formulation. Int J Numer Meth Eng 63(7):1069–1088

    Article  MATH  Google Scholar 

  24. Krabbenhøft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44(5):1533–1549

    Article  MATH  Google Scholar 

  25. Krabbenhøft K, Lyamin AV, Sloan SW, Wriggers P (2007) An interior-point algorithm for elastoplasticity. Int J Numer Meth Eng 69(3):592–626

    Article  MathSciNet  MATH  Google Scholar 

  26. Li JH, Cassidy MJ, Tian Y, Huang J, Lyamin AV, Uzielli M (2014) Comparative study of bearing capacity of buried footings using random limit analysis and random finite element method. In: Computer methods and recent advances in geomechanics—proceedings of the 14th international conference of international association for computer methods and recent advances in geomechanics, IACMAG 2014

  27. Li JH, Tian Y, Cassidy MJ (2014) Failure mechanism and bearing capacity of footings buried at various depths in spatially random soil. J Geotech Geoenvironmental Eng 141(2):04014099

    Article  Google Scholar 

  28. Lyamin AV, Sloan SW (2002) Lower bound limit analysis using non-linear programming. Int J Numer Meth Eng 55(5):573–611

    Article  MATH  Google Scholar 

  29. Lyamin AV, Sloan SW (2002) Upper bound limit analysis using linear finite elements and non-linear programming. Int J Numer Anal Meth Geomech 26(2):181–216

    Article  MATH  Google Scholar 

  30. Lyamin AV, Sloan SW, Krabbenhøft K, Hjiaj M (2005) Lower bound limit analysis with adaptive remeshing. Int J Numer Meth Eng 63(14):1961–1974

    Article  MATH  Google Scholar 

  31. Lyamin AV, Krabbenhøft K, Sloan SW (2013) Adaptive limit analysis using deviatoric fields. In: VI International conference on adaptive modeling and simulation ADMOS 2013. Lisbon, Portugal

  32. Pieczyńska-Kozłowska JM, Puła W, Griffiths DV, Fenton GA (2015) Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Comput Geotech 67:229–238

    Article  Google Scholar 

  33. Rowe RK, Davis EH (1982) The behaviour of anchor plates in clay. Géotechnique 32(1):9–23

    Article  Google Scholar 

  34. Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Meth Geomech 12(1):61–77

    Article  MATH  Google Scholar 

  35. Sloan SW (1989) Upper bound limit analysis using finite elements and linear programming. Int J Numer Anal Meth Geomech 13(3):263–282

    Article  MATH  Google Scholar 

  36. Sloan SW, Kleeman PW (1995) Upper bound limit analysis using discontinuous velocity fields. Comput Methods Appl Mech Eng 127(1–4):293–314

    Article  MATH  Google Scholar 

  37. Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63:531–571

    Article  Google Scholar 

  38. Soubra AH, Abdel Massih DSY,. Kalfa M (2008) Bearing capacity of foundations resting on a spatially random soil. In: GeoCongress 2008, p 66–73

  39. Sudicky EA (1986) A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    Article  Google Scholar 

  40. Zhang D, Lu Z (2004) An efficient, high-order perturbation approach for flow in random porous media via Karhunen–Loève and polynomial expansions. J Comput Phys 194(2):773–794

    Article  MATH  Google Scholar 

  41. Zhu H, Griffiths DV, Fenton GA, Zhang LM (2015) Undrained failure mechanisms of slopes in random soil. Eng Geol 191:31–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abid Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Lyamin, A.V., Huang, J. et al. Probabilistic stability assessment using adaptive limit analysis and random fields. Acta Geotech. 12, 937–948 (2017). https://doi.org/10.1007/s11440-016-0505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-016-0505-1

Keywords

Navigation