Skip to main content
Log in

Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria)

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper deals with the inverse problem of using time-displacement monitoring data to determine the material parameters of a numerical model of a large-scale mass movement. A finite element model for simulating the mechanical behavior is presented for the Gradenbach landslide in Carinthia, Austria. Particular attention is paid to the calibration of the constitutive relationships, which represent a prerequisite for a realistic quantitative analysis. After a short introduction to the concept of model-parameter identification, this paper demonstrates how to apply the proposed model identification strategy to determine model parameters for the Gradenbach example. The impact of the amount of reference data available for the inverse model-parameter analysis is evaluated by means of artificial reference data. Subsequently, the numerical model is calibrated using field measurement data. The results obtained are presented, and the benefits and drawbacks of the proposed concept are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abaqus reference manual, Version 6.6-1

  2. Ampferer O (1939) Über einige Formen der Bergzerreißung. Sitzungsberichte Akademie der Wissenschaften Wien, Math. Naturwissenschaftliche KI., Abt. I 14:1–14

    Google Scholar 

  3. Blanc A, Durville J-L, Follacci J-P, Gaudin B, Pincent B (1987) Méthodes de surveillance d’un glissement de terrain de très grande ampleur: la Clapière, Alpes Maritimes, France. Bull Int Assoc Eng Geol 35:37–44

    Article  Google Scholar 

  4. Bonnard C, Noverraz F, Dupraz H (1996) Long-term movements of substabilized versants and climatic changes in the Swiss Alps. In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, vol 3. Balkema, Rotterdam, pp 1525–1530

    Google Scholar 

  5. Borja RI, Liu X, White JA (2012) Multiphysics hillslope processes triggering landslides. Acta Geotech 7:261–269. doi:10.1007/s11440-012-0175-6

    Article  Google Scholar 

  6. Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159

    Article  Google Scholar 

  7. Brückl E, Brückl J (2006) Geophysical models of the Lesachriegel and Gradenbach deep-seated mass-movements (Schober Range, Austria). Eng Geol 83:1–3

    Article  Google Scholar 

  8. Calvello M, Finno RJ (2002) Calibration of soil models by inverse analysis. In: Pande GN, Pietruszczak S (eds) Numerical models in geomechanics NUMOG VIII. Balkema, Rotterdam, pp 107–116

    Chapter  Google Scholar 

  9. Calvello M, Finno RJ (2004) Selecting parameters to optimization model calibration by inverse analysis. Comput Geotech 31:411–425

    Article  Google Scholar 

  10. Cheng YM, Lansivaara T, Wei WB (2007) Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput Geotech 34:137–150

    Article  Google Scholar 

  11. Chugh AK (2003) On the boundary conditions in slope stability analysis. Int J Numer Anal Methods Geomech 27:905–926. doi:10.1002/nag.305

    Article  MATH  Google Scholar 

  12. Clerc M (2005) Binary particle swarm optimisers: toolbox, derivations, and mathematical insights. (http://clerc.maurice.free.fr/pso/)

  13. Cui L, Sheng D (2006) Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Comput Geotech 32:555–563

    Article  Google Scholar 

  14. Deng JH, Lee CF (2001) Displacement back analysis for a steep slope at the Three Gorges Project site. Int J Rock Mech Min Sci 38(2):259–268

    Article  Google Scholar 

  15. Deng JH, Tham LG, Lee CF, Yang ZY (2007) Three-dimensional stability evaluation of a preexisting landslide with multiple sliding directions by the strength-reduction technique. Can Geotech J 44:343–354

    Article  Google Scholar 

  16. Eberhardt E, Bonzanigo L, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. Can Geotech J 44(10):1181–1199

    Article  Google Scholar 

  17. Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87

    Article  Google Scholar 

  18. Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, pp 39–43

  19. Finsterle S (2000) Demonstration of optimization techniques for groundwater plume remediation. Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley

    Book  Google Scholar 

  20. Feng X-T, Chen B-R, Yang C, Zhou H, Ding X (2005) Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int J Rock Mech Min Sci 43(5):789–801. doi:10.1016/j.ijrmms.2005.12.010

    Google Scholar 

  21. Forlati F, Gioda G, Scavia C (2001) Finite element analysis of a deep-seated slope deformation. Rock Mech Rock Eng 34(2):135–159

    Article  Google Scholar 

  22. Fürlinger W (1973) Böschungsverhalten in zweischarig geklüftetem Material. Mitteilungen der Gesellschaft für Geologie und Bergbaustudien 22:233–242

    Google Scholar 

  23. Gens A, Ledesma A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—II. Application to a tunnel excavation problem. Elsevier Science. Comput Geotech 18(1):29–46

    Article  Google Scholar 

  24. Griffiths DV, Marquez RM (2007) Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique 57(6):537–546

    Article  Google Scholar 

  25. Interreg 1 (1996) Risques générés par les grands mouvements de versant, étude comparative de 4 sites des Alpes franco-italiennes. Programme Interreg 1 France-Italie. Regione Piemonte-University J. Fourier, LIRIGM Grenoble, p 207

  26. Kalkani EC, Piteau DR (1976) Finite element analysis of toppling failure at Hell’s Gate Bluffs, British Columbia. Bull Int Assoc Eng Geol XIII 4:315–327

    Google Scholar 

  27. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, IEEE Press, Piscataway, NJ, pp 1942–1948

  28. Krahn J, Morgenstern NR (1976) Mechanics of the Frank Slide. Rock Eng 2:309–332

    Google Scholar 

  29. Ledesma A, Gens A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—I. Maximum likelihood approach. Elsevier Science. Comput Geotech 18(1):1–27

    Article  Google Scholar 

  30. Ledesma A, Gens A, Alonso EE (1996) Parameter and variance estimation in geotechnical backanalysis using prior information. Int J Numer Anal Meth Geomech 20:119–141

    Article  MATH  Google Scholar 

  31. Li X (2007) Finite element analysis of slope stability using a nonlinear failure criterion. Comput Geotech 34:127–136

    Article  Google Scholar 

  32. Mahr T, Nemcok A (1977) Deep-seated creep deformations in the crystalline cores of the Tatry Mts. Bull Int Assoc Eng Geol 16:104–106

    Article  Google Scholar 

  33. Malecot Y, Flavigny E, Boulon M (2004) Inverse analysis of soil parameters for finite element simulation of geotechnical structures: pressuremeter test and excavation problem. In: Brinkgreve, Schad, Schweiger, Willand (eds) Proceedings Symposium on Geotechnical Innovations. Verlag Glückauf, Essen, pp 659–675

  34. Manly BFJ (1944) Multivariate statistical methods—a primer, 3rd edn. Chapman & Hall/CRC, London

    Google Scholar 

  35. Matouš K, Lepš M, Zeman J, Šejnoha M (2000) Applying genetic algorithms to selected topics commonly encountered in engineering practice. Comput Methods Appl Mech Eng 190:1629–1650

    Article  MATH  Google Scholar 

  36. Meier J, Datcheva MD, Moser M, Schanz T (2009) Identification of constitutive and geometrical parameters for slope instability modelling—application to mountain-splitting area reutte/tyrol (Austria). Aust J Earth Sci 102/2:81–89 ISSN 2072-7151

    Google Scholar 

  37. Meier J, Datcheva M, Schanz T (2007) Identification of constitutive and geometrical parameters of numerical models with application in tunnelling. ECCOMAS Thematic Conference on Computational Methods in Tunnelling (EURO:TUN 2007), Wien

  38. Meier J, Schädler W, Borgatti L, Corsini A, Schanz T (2008) Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling. J Artif Evol Appl, doi:10.1155/2008/574613, p 14. http://www.hindawi.com

  39. Meier J (2008) Parameterbestimmung mittels inverser Verfahren für geotechnische Problemstellungen. Dissertation, Verlag der Bauhaus-Universität Weimar, Schriftenreihe Geotechnik, Issue 19

  40. Moser M, Kiefer J (1988) Die hydrologischen Verhältnisse und ihre Beziehungen zur Kinematik im Bereich der Talzuschubsmasse Gradenbach/Kärnten. Steirische Beiträge zur Hydrogeologie 39:95–115

    Google Scholar 

  41. Moser M (1994) Geotechnics of large-scale slope movements (“Talzuschübe”) in alpine regions. Proceedings 7th IAEG Congress, Lisboa, pp 1533–1542

  42. Moser M (1996) The time-dependent behaviour of sagging of mountain slopes. Proceeding of the 7th International Symposium on Landslides, Balkema, Rotterdam, pp 809–814

  43. Mühlhaus HB, Shi J, Olsen-Kettle L, Moresi L (2011) A double slip non-coaxial flow rule for viscous-plastic Cosserat materials. Acta Geotech 6:219–229. doi:10.1007/s11440-011-0148-1

    Article  Google Scholar 

  44. Noverraz F (1996) Sagging or deep-seated creep: fiction or reality? In: Senneset K. (ed) Proceedings of the 7th international symposium on landslides, vol 2. Balkema, Rotterdam, pp 821–828

  45. Radbruch-Hall DH (1978) Gravitational creep of rock masses on slopes. In: Voight B (ed), “Rockslides and Avalanches—Natural Phenomena”, Development in Geotechnical Engineering, vol 14A. pp 693–705

  46. Schanz T, Zimmerer M, Datcheva M, Meier J (2006) Identification of constitutive parameters for numerical models via inverse approach. Felsbau—Rock and Soil Engineering—Journal for Engineering Geology, Geomechanics and Tunneling 2/2006:11–21

    Google Scholar 

  47. Schön S (2007) Affine distortion of small GPS networks with large height differences. GPS solutions, Springer, vol 11, pp 107–117

  48. Stini J (1941) Unsere Täler wachsen zu. Geologie und Bauwesen 13:71–79

    Google Scholar 

  49. Tacher L, Bonnard Ch, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2:3–14

    Article  Google Scholar 

  50. Weidner S, Moser M, Lang E (1998) Influence of hydrology on sagging of mountain slopes (“Talzuschübe”)—New results of time series analysis. Proceedings 8th International IAEG Congress, Vancouver, pp 1259–1266

  51. Ziegler HJ (1982) Die Hangbewegungen im Lugnez, am Heinzenberg und bei Schuders (Graubünden). Geologie und Geomechanik. Unpublished dissertation, Bern, p 106

  52. Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25(4):671–689

    Article  Google Scholar 

  53. Zienkiewicz OC, Pande GN (1977) Time-dependent multilaminate model of rocks—a numerical study of deformation and failure of rock masses. Int J Numer Anal Methods Geomech 1:219–247

    Article  Google Scholar 

  54. Zischinsky U (1966) Bewegungsbilder instabiler Talflanken. Mitteilungen der Gesellschaft für Geologie und Bergbaustudien 17:127–167

    Google Scholar 

Download references

Acknowledgments

The presented results have been achieved within the framework of the DFG research project “Geotechnical modeling of deep-seated slope movements”. The authors wish to express their gratitude for the financial support by the German Research Association DFG (Deutsche Forschungsgemeinschaft), funded by the sponsoring program SCHA 675/11-2 and MO 248/18-2. M. Datcheva acknowledges the support of the Bulgarian Science Fund under the grant DSAB 02/6. The authors would like to thank Stephen Allen and Marcel Regelous for checking and correcting the English in this paper. The anonymous reviewers are gratefully acknowledged for their valuable remarks and suggestions yielding a significant improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Moser, M., Datcheva, M. et al. Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria). Acta Geotech. 8, 355–371 (2013). https://doi.org/10.1007/s11440-013-0211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0211-1

Keywords

Navigation