Skip to main content
Log in

Organolead halide perovskites: a family of promising semiconductor materials for solar cells

  • Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Great attention has recently been drawn to developing cost-effective, high efficiency solar cells to meet the ever increasing demand for clean energy. We have most recently witnessed a breakthrough and a rapid development in solid state, hybrid solar cells using organolead halide perovskites as light harvesters. These semiconductors can not only serve as sensitizer in solid state sensitized solar cells with efficiency up to unprecedented 15 %, but also function as both light absorber and hole conductor (or electron conductor) at the same time to display power conversion efficiency above 10 %. In this review, we will introduce their operation mechanism, structure, and especially the development of the organolead halide perovskite based solar cells. Based on the achievements that have been made to date, solid state photovoltaic device with superior performance than the present one is highly expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Green MA (2009) The path to 25 % silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt 17:183–189

    Article  Google Scholar 

  2. Green MA, Emery K, Hishikawa Y et al (2013) Solar cell efficiency tables (version 42). Prog Photovolt Res Appl 21:827–837

    Article  Google Scholar 

  3. Jackson P, Hariskos D, Lotter E et al (2011) New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20 %. Prog Photovolt 19:894–897

    Google Scholar 

  4. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801

    Article  Google Scholar 

  5. Yella A, Lee HW, Tsao HN et al (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629–634

    Article  Google Scholar 

  6. Wang P, Zakeeruddin SM, Moser JE et al (2004) A solvent-free, SeCN/(SeCN) 3 based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc 126:7164–7165

    Google Scholar 

  7. Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585

    Article  Google Scholar 

  8. Kruger J, Plass R, Cevey L et al (2001) High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl Phys Lett 79:2085–2087

    Article  Google Scholar 

  9. Schmidt-Mende L, Bach U, Humphry-Baker R et al (2005) Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv Mater 17:813–815

    Article  Google Scholar 

  10. Wang MK, Moon SJ, Xu MF et al (2010) Efficient and stable solid-state dye-sensitized solar cells based on a high-motar-extinction-coefficient sensitizer. Small 6:319–324

    Article  Google Scholar 

  11. Cai N, Moon SJ, Cevey-Ha L et al (2011) An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett 11:1452–1456

    Article  Google Scholar 

  12. Burschka J, Dualeh A, Kessler F et al (2011) Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J Am Chem Soc 133:18042–18045

    Article  Google Scholar 

  13. Sambur JB, Novet T, Parkinson BA (2010) Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66

    Article  Google Scholar 

  14. Semonin OE, Luther JM, Choi S et al (2011) Peak external photocurrent quantum efficiency exceeding 100 % via meg in a quantum dot solar cell. Science 334:1530–1533

    Google Scholar 

  15. Tisdale WA, Williams KJ, Timp BA et al (2010) Hot-electron transfer from semiconductor nanocrystals. Science 328:1543–1547

    Article  Google Scholar 

  16. Im SH, Lim CS, Chang JA et al (2011) toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett 11:4789–4793

    Article  Google Scholar 

  17. Chang JA, Im SH, Lee YH et al (2012) Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett 12:1863–1867

    Article  Google Scholar 

  18. Kim HS, Lee CR, Im JH et al (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591

    Google Scholar 

  19. Lee MM, Teuscher J, Miyasaka T et al (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647

    Article  Google Scholar 

  20. Burschka J, Pellet N, Moon SJ et al (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Google Scholar 

  21. Cava RJ, Batlogg B, Espinosa GP et al (1989) Superconductivity at 3.5 K in BaPb0.75Sb0.25O3—why is t c so low. Nature 339:291–293

    Article  Google Scholar 

  22. Mitzi DB, Field CA, Harrison WTA et al (1994) Conducting tin halides with a layered organic-based perovskite structure. Nature 369:467–469

    Article  Google Scholar 

  23. Chondroudis K, Mitzi DB (1999) Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater 11:3028–3030

    Article  Google Scholar 

  24. Era M, Tsutsui T, Saito S (1995) Polarized electroluminescence from oriented p-sexiphenyl vacuum-deposited film. Appl Phys Lett 67:2436–2438

    Article  Google Scholar 

  25. Kagan CR, Mitzi DB, Dimitrakopoulos CD (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    Article  Google Scholar 

  26. Peng B, Jungmann G, Jager C et al (2004) Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord Chem Rev 248:1479–1489

    Article  Google Scholar 

  27. Melas-Kyriazi J, Ding IK, Marchioro A et al (2011) The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv Energy Mater 1:407–414

    Article  Google Scholar 

  28. Crossland EJW, Noel N, Sivaram V et al (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495:215–219

    Article  Google Scholar 

  29. Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104:8989–8994

    Article  Google Scholar 

  30. Kim HS, Lee JW, Yantara N et al (2013) High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett 13:2412–2417

    Article  Google Scholar 

  31. Qiu JH, Qiu YC, Yan KY et al (2013) All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5:3245–3248

    Article  Google Scholar 

  32. Miyasaka T, Kojima A, Teshima K et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  33. Im JH, Lee CR, Lee JW et al (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Article  Google Scholar 

  34. Chang JA, Rhee JH, Im SH et al (2010) High-performance nanostructured inorganic-organic heterojunction solar cells. Nano Lett 10:2609–2612

    Article  Google Scholar 

  35. Chen H, Pan X, Liu W et al (2013) Efficient panchromatic inorganic-organic heterojunction solar cells with consecutive charge transport tunnels in hole transport material. Chem Commun 49:7277–7279

    Article  Google Scholar 

  36. Bi DQ, Yang L, Boschloo G et al (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536

    Article  Google Scholar 

  37. Cai B, Xing YD, Yang Z et al (2013) High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ Sci 6:1480–1485

    Article  Google Scholar 

  38. Ball JM, Lee MM, Hey A et al (2013) Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci 6:1739–1743

    Article  Google Scholar 

  39. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  40. Heo JH, Im SH, Noh JH et al (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:487–492

    Article  Google Scholar 

  41. Noh JH, Im SH, Heo JH et al (2013) Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Google Scholar 

  42. Etgar L, Gao P, Xue ZS et al (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134:17396–17399

    Article  Google Scholar 

  43. Laban WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cell. Energy Environ Sci 6:3249–3253

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the “Hundred Talents Program” from the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Hua Zhang.

Additional information

SPECIAL ISSUE: Advanced Materials for Clean Energy

About this article

Cite this article

Zhang, WH., Cai, B. Organolead halide perovskites: a family of promising semiconductor materials for solar cells. Chin. Sci. Bull. 59, 2092–2101 (2014). https://doi.org/10.1007/s11434-014-0259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0259-9

Keywords

Navigation