Skip to main content
Log in

Genome editing and animal models

  • Review
  • Gene Engineering
  • Published:
Chinese Science Bulletin

Abstract

Transgenic technology allows a gene of interest to be introduced into the genome of a laboratory animal, and provides an extremely powerful tool to dissect the molecular mechanisms of disease. Transgenic mouse models made by microinjection of DNA into zygotic pronuclei in particular have been widely used by the genetics community for 30 years. However, it remains a rather crude approach: injected sequences randomly insert in multiple copies as concatamers, they can be mutagenic, and they have variable or silenced expression depending on the site of integration, a phenomenon called position effects. As a result, multiple lines are required in order to confirm appropriate transgene expression. This can be partially overcome by flanking transgenes with insulator sequences to protect the transgene from the influence of the surrounding regulatory elements. Large (<300 kb) BAC-based transgenic vectors have also been shown to be more resistant to position effects. However, animals carrying extra copies of fairly large regions of the genome could have unpredictable phenotypes. The most effective method used to control for position effects is to target transgene insertion to specific genomic loci, the so-called targeted transgenesis; for instance, the fast, site-specific transgenic technology Targatt™. The purpose of this review is to provide an overview on the current existing methods for making targeted transgenic mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  Google Scholar 

  2. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  Google Scholar 

  3. Anastassiadis K, Glaser S, Kranz A et al (2010) A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol 477:109–123

    Google Scholar 

  4. Kranz A, Fu J, Duerschke K et al (2010) An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis 48:512–520

    Article  Google Scholar 

  5. Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162

    Article  Google Scholar 

  6. Groth AC, Olivares EC, Thyagarajan B et al (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000

    Article  Google Scholar 

  7. Keravala A, Groth AC, Jarrahian S et al (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics 276:135–146

    Article  Google Scholar 

  8. Ma QW, Sheng HQ, Yan JB et al (2006) Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun 345:984–988

    Article  Google Scholar 

  9. Groth AC, Fish M, Nusse R et al (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  Google Scholar 

  10. Venken KJ, He Y, Hoskins RA et al (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    Article  Google Scholar 

  11. Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104:3312–3317

    Article  Google Scholar 

  12. Olivares EC, Hollis RP, Chalberg TW et al (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128

    Article  Google Scholar 

  13. Hollis RP, Stoll SM, Sclimenti CR et al (2003) Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol 1:79

    Article  Google Scholar 

  14. Belteki G, Gertsenstein M, Ow DW et al (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21:321–324

    Article  Google Scholar 

  15. Sangiorgi E, Shuhua Z, Capecchi MR (2008) In vivo evaluation of PhiC31 recombinase activity using a self-excision cassette. Nucleic Acids Res 36:e134

    Article  Google Scholar 

  16. Tasic B, Hippenmeyer S, Wang C et al (2011) Site-specific integrase- mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108:7902–7907

    Article  Google Scholar 

  17. Hippenmeyer S, Youn YH, Moon HM et al (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68:695–709

    Article  Google Scholar 

  18. Tasic B, Miyamichi K, Hippenmeyer S et al (2012) Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE 7:e33332

    Article  Google Scholar 

  19. Fan X, Petitt M, Gamboa M et al (2012) Transient, inducible, placenta-specific gene expression in mice. Endocrinology 153:5637–5644

    Article  Google Scholar 

  20. Turan S, Galla M, Ernst E et al (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    Article  Google Scholar 

  21. Ohtsuka M, Ogiwara S, Miura H et al (2010) Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression. Nucleic Acids Res 38:e198

    Article  Google Scholar 

  22. Brinster RL, Braun RE, Lo D et al (1989) Targeted correction of a majorhistocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci USA 86:7087–7091

    Article  Google Scholar 

  23. Geurts AM, Cost GJ, Freyvert Y et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Article  Google Scholar 

  24. Geurts AM, Cost GJ, Rémy S et al (2010) Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 597:211–225

    Article  Google Scholar 

  25. Tesson L, Usal C, Ménoret S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  Google Scholar 

  26. Meyer M, de Angelis MH, Wurst W et al (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107:15022–15026

    Article  Google Scholar 

  27. Cui X, Ji D, Fisher DA et al (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  Google Scholar 

  28. Wefer B, Meyer M, Ortiz O et al (2013) Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci USA 110:3782–3787

    Article  Google Scholar 

  29. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  Google Scholar 

  30. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  Google Scholar 

  31. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  Google Scholar 

  32. Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:e2579

    Article  Google Scholar 

  33. Garneau JE, Dupuis MÈ, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Google Scholar 

  34. Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  Google Scholar 

  35. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruby Yanru Chen-Tsai.

About this article

Cite this article

Chen-Tsai, R.Y., Jiang, R., Zhuang, L. et al. Genome editing and animal models. Chin. Sci. Bull. 59, 1–6 (2014). https://doi.org/10.1007/s11434-013-0032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0032-5

Keywords

Navigation