Skip to main content
Log in

Genome research profile of two Cordyceps sinensis cDNA libraries

  • Articles
  • Bioinformatics
  • Published:
Chinese Science Bulletin

Abstract

Cordyceps sinensis (CS) is well known as an ancient Chinese herb. It is used to expand bronchial smooth muscles, inhibit tumor growth and decrease blood pressure. Cordyceps sinensis is composed of two parts. One is the dead larvae body; the other is the stroma like withered grass. Up to now, few genome database articles about Cordyceps sinensis have been reported. In this study, two cDNA libraries were constructed using the worm part and grass part respectively for the first time. 12192 and 15456 clones from the worm-part (CSCA) and grass-part (CSBA) library were respectively picked. Sequences derived from CSCA were clustered into 1333 contigs and 2469 singlets, while those from CSBA were clustered into 1297 contigs and 2875 singlets. These ESTs include sequences representing a significant portion of proteins encoding genes in cell signalling, metabolism, information storage and processing. Some enzymes encoding genes were also found and linked with CS’s physiology such as proteases, peptidases, lipases and chitinase. Pairwise comparison between the two cDNA libraries was also studied. Some ESTs were found only in CSCA and some only in CSBA. Finally, a comparative genomics research was performed with Fusarium graminearum, Aspergillus nidulans, Neurospora crassa and Saccharomyces bayanus. The results indicate that the fungus’ genes maybe have complicated variation at the nucleic acid level, but the proteins translated are still conservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manabe N, Sugimoto M, Auma Y, et al. Effect of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism in the mouse. Jpn J Pharmacol, 1996, 70: 85–88

    Article  Google Scholar 

  2. Cho E M, Liu L, Farmerie W, et al. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology, 2006, 152: 2843–2854

    Article  Google Scholar 

  3. Zhu J S, Halpern G M, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: Part II. J Alt Comp Med, 1998, 4: 429–457

    Article  Google Scholar 

  4. Yoshida J, Takamura S, Yamaguchi N, et al. Antitumor activity of an extract of Cordyceps sinensis (Berk.) Sacc. against murine tumor cell lines. Jpn J Exp Med, 1989, 59: 157–161

    Google Scholar 

  5. Bok J W, Lermer L, Chilton J, et al. Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 1999, 51: 891–898

    Article  Google Scholar 

  6. White J L, Dawson W O. Effect of cordycepin on triphosphate in vitro RNA synthesis by plant vitral replicates. J Virol, 1979, 29: 811–814

    Google Scholar 

  7. Liu C, Lu S, Ji M R. Effects of Cordyceps sinensis (CS) on in vitro natural killer cells. Chung-Kuo Chung Hsi I Chieh Ho Tsa Chih, 1992, 12: 267–269

    Google Scholar 

  8. Xu R H, Peng X E, Chen G Z, et al. Effects of Cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin Med J (Engl), 1992, 105: 97–101

    Google Scholar 

  9. Wang S M, Lee L J, Lin W W, et al. Effect of a water-soluble extract of Cordyceps sinensis on steroidogenesis and capsular morphology of lipid droplet in cultured rat adrenocortical cell. J Cell Biochem, 1998, 69: 483–489

    Article  Google Scholar 

  10. Liao W B. Chinese Tibetan Medicine. Qinghai Provincial Institute For Drug Control and Qinghai Provincial Institute For Tibetan Medicine (in Chinese). Shanghai: Shanghai Science and Technology Press, 1996

    Google Scholar 

  11. Chiang C S, Chuang W L, Huang H L, et al. Cordyceps sinensis enhances the anti-tumor effects of taxol by promoting the recovery of taxol-caused leukopenia and immunosuppression. AACR Meeting Abstracts, 2006. 1278

  12. Yang H Y, Leu S F, Wang Y K, et al. Cordyceps sinensis mycelium induces MA-10 mouse Leydig tumor cell apoptosis by activating the caspase-8 pathway and suppressing the NF-kappaB pathway. Arch Androl, 2006, 52: 103–110

    Article  Google Scholar 

  13. Cheng D W, Zou Y, Qian N, et al. Effects of compound preparation of Cordyceps sinensis and Tripterygium hypoglaucum on survival time of pigskin after allogeneic transplantation (in Chinese). J Chin Integrat Med, 2006, 4: 185–188

    Article  Google Scholar 

  14. Huang B M, Hsiao K Y, Chuang P C, et al. Upregulation of steroidogenic enzymes and ovarian 17beta-estradiol in human granulosa-lutein cells by Cordyceps sinensis mycelium. Biol Reprod, 2004, 70: 1358–1364

    Article  Google Scholar 

  15. Kuo C F, Chen C C, Luo Y H, et al. Cordyceps sinensis mycelium protects mice from group A streptococcal infection. J Med Microbiol, 2005, 54: 795–802

    Article  Google Scholar 

  16. Huang B M, Ju S Y, Wu C S, et al. Cordyceps sinensis and its fractions stimulate MA-10 mouse Leydig tumor cell steroidogenesis. J Androl, 2001, 22: 831–837

    Google Scholar 

  17. Chen Y Q, Hu B, Xu F, et al. Genetic variation of Cordyceps sinensis, a fruit-body-producing entomopathogenic species from different geographical regions in China. FEMS Microbiol Lett, 2004, 230: 153–158

    Article  Google Scholar 

  18. Kuo H C, Su Y L, Yang H L, et al. Identification of Chinese medicinal fungus Cordyceps sinensis by PCR-single-stranded conformation polymorphism and phylogenetic relationship. J Agric Food Chem, 2005, 53: 3963–3968

    Article  Google Scholar 

  19. Leung P H, Zhang Q X, Wu J Y. Mycelium cultivation, chemical composition and antitumour activity of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. J Appl Microbiol, 2006, 101: 275–283

    Article  Google Scholar 

  20. Kiho T, Ookubo K, Usui S, et al. Structural features and hypoglycemic activity of a polysaccharide (CS-F10) from the cultured mycelium of Cordyceps sinensis. Biol Pharm Bull, 1999, 22: 966–970

    Google Scholar 

  21. Yamaguchi Y, Kagota S, Nakamura K, et al. Antioxidant activity of the extracts from fruiting bodies of cultured Cordyceps sinensis. Phytother Res, 2000, 14: 647–649

    Article  Google Scholar 

  22. Buenz E J, Weaver J G, Bauer B A, et al. Cordyceps sinensis extracts do not prevent Fas-receptor and hydrogen peroxide-induced T-cell apoptosis. J Ethnopharmacol, 2004, 90: 57–62

    Article  Google Scholar 

  23. Mei Q B, Tao J Y, Gao S B, et al. Antiarrhythmic effects of Cordyceps sinensis (Berk.) Sacc (in Chinese). China J Chin Mat Med, 1989, 14: 616–618

    Google Scholar 

  24. Zhang Q, Wu J, Hu Z, et al. Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci, 2004, 75: 2911–2919

    Article  Google Scholar 

  25. Kuo Y C, Tsai W J, Shiao M S, et al. Cordyceps sinensis as an immunomodulatory agent. Am J Chin Med, 1996, 24: 111–125

    Article  Google Scholar 

  26. Kiho T, Hui J, Yamane A, et al. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol Pharm Bull, 1993, 16: 1291–1293

    Google Scholar 

  27. Zhou L, Yang W, Xu Y, et al. Short-term curative effect of cultured Cordyceps sinensis (Berk.) Sacc. Mycelia in chronic hepatitis B (in Chinese). China J Chin Mat Med, 1990, 15: 53–55

    Google Scholar 

  28. Manabe N, Azuma Y, Sugimoto M, et al. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br J Nutr, 2000, 83: 197–204

    Google Scholar 

  29. Li S P, Li P, Dong T T, et al. Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine, 2001, 8: 207–212

    Article  Google Scholar 

  30. Koh J H, Kim J M, Chang U J, et al. Hypocholesterolemic effect of hot-water extract from mycelia of Cordyceps sinensis. Biol Pharm Bull, 2003, 26: 84–87

    Article  Google Scholar 

  31. Guo F Q, Li A, Huang L F, et al. Identification and determination of nucleosides in Cordyceps sinensis and its substitutes by high performance liquid chromatography with mass spectrometric detection. J Pharm Biomed Anal, 2006, 40: 623–630

    Article  Google Scholar 

  32. Li S P, Li P, Dong T T, et al. Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Electrophoresis, 2001, 22: 144–150

    Article  Google Scholar 

  33. Chen Y Q, Wang N, Qu L H, et al. Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem Syst Ecol, 2001, 29: 597–607

    Article  Google Scholar 

  34. Chen S, Yin D, Li L, et al. Resources and distribution of Cordyceps sinensis in Naqu Tibet (in Chinese). J Chin Med Mater, 2000, 23: 673–675

    Google Scholar 

  35. Chen S J, Yin D H, Zhong G Y, et al. Study on the biology of adults parasite of Cordyceps sinensis, Hepialus biruensis (in Chinese). China J Chin Mat Med, 2002, 27: 893–895

    Google Scholar 

  36. Ewing B, Hillier L, Wendl M, et al. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res, 1998, 8: 175–185

    Google Scholar 

  37. Ewing B, Green P. Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res, 1998, 8: 186–194

    Google Scholar 

  38. Pedretti K T. Accurate, parallel clustering of EST (Gene) sequences. Master Dissertation. Department of Electrical and Computer Engineering, University of Iowa, 2001

  39. David G. Viewing and editing assembled sequences using consed. In: Baxevanis A D, Davison D B, eds. Current Protocols in Bioinformatics. New York: John Wiley & Co., 2004

    Google Scholar 

  40. Tatusov R L, Fedorova N D, Jackson J D. The COG database: An updated version includes eukaryotes. BMC Bioinformatics, 2003, 4: 41

    Article  Google Scholar 

  41. Yang Y X, Yang D R. Research of the fungus Cordyceps sinensis infecting the larvae of Hepialidae of Lepidoptera. Zool Res, 1989, 10: 225–229

    Google Scholar 

  42. Li Q, Zeng W, Yin D, et al. A preliminary study on alternation of generations of Cordyceps sinensis (Berkey) Sacc. Zhongguo Zhong Yao Za Zhi, 1998, 23: 210–212

    Google Scholar 

  43. Li L, Yin D, Chen S, et al. The ejection of ascoporae of Cordyceps sinensis. Zhong Yao Cai, 2000, 23: 515–517

    Google Scholar 

  44. Li L, Yin D H, Tang C H, et al. Relationship between illumination and growth of the stroma of Cordyceps sinensis (Berk.) Sacc (in Chinese). China J Chin Mat Med, 1993, 18: 80–82; 124–125

    Google Scholar 

  45. Galagan J E, Calvo S E, Borkovich K A, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422: 859–868

    Article  Google Scholar 

  46. Loubradou G, Bégueret J, Turcq B. A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserine. Genetics, 1997, 147: 581–588

    Google Scholar 

  47. Adachi K, Hamer J E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell, 1998, 10: 1361–1374

    Article  Google Scholar 

  48. Barhoom S, Sharon A. cAMP regulation of “pathogenic” and “saprophytic” fungal spore germination. Fungal Genet Biol, 2004, 41: 317–326

    Article  Google Scholar 

  49. Gold S E, Brogdon S M, Mayorga M E, et al. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell, 1997, 9: 1585–1594

    Article  Google Scholar 

  50. Liebmann B, Müller M, Braun A, et al. The cyclic AMP-dependent protein kinase A network regulates development and virulence in Aspergillus fumigatus. Infect Immun, 2004, 72: 5193–5203

    Article  Google Scholar 

  51. Jiang H B, Zhang Y, Jiang Q L, et al. Advances in the research of chitinase (in Chinese). Shandong Sci, 2000, 13: 8

    Google Scholar 

  52. Shi X Z, Wang M, Huang H P, et al. Extracellular chitinase activities of Metarhizium anisopliae and its correlation with toxicity of Brontispa longissima (in Chinese). Guangxi Agricult Sci, 2008, 39: 313–316

    Google Scholar 

  53. Han B, Yu C, Liu W. The research actualities of chitinase and prospects. Chinese J Marine Drugs, 2001, 83: 41–43

    Google Scholar 

  54. Hsu C C, Tsai S J, Huang Y L, et al. Regulatory mechanism of Cordyceps sinensis mycelium on mouse Leydig cell steroidogenesis. FEBS Lett, 2003, 543: 140–143

    Article  Google Scholar 

  55. Bonants P J, Fitters P F, Thijs H, et al. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 1995, 141: 775–784

    Article  Google Scholar 

  56. Manners D J, Masson A J, Patterson J C. The structure of a beta-(1 leads to 3)-D-glucan from yeast cell walls. Biochem J, 1973, 135: 19–30

    Google Scholar 

  57. Pitson S M, Seviour R J, McDougall B M. Noncellulolytic fungal beta-glucanases: Their physiology and regulation. Enzyme Microb Technol, 1993, 15: 178–192

    Article  Google Scholar 

  58. Hwang C S, Rhie G E, Oh J H, et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology, 2002, 148: 3705–3713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Dong.

Additional information

These authors contributed equally to this work

About this article

Cite this article

Zhang, S., Feng, H., Li, X. et al. Genome research profile of two Cordyceps sinensis cDNA libraries. Chin. Sci. Bull. 55, 1403–1411 (2010). https://doi.org/10.1007/s11434-010-0113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-0113-7

Keywords

Navigation