Skip to main content
Log in

Active optical clock

  • Brief Communication/Atomic & Molecular Physics
  • Published:
Chinese Science Bulletin

Abstract

This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the relativistic Doppler effect, and can be improved by cold atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schawlow A L, Townes C H. Infrared and optical masers. Phys Rev, 1958, 112: 1940–1949

    Article  Google Scholar 

  2. Goldenberg M, Kleppner D, Ramsey N F. Atomic hydrogen maser. Phys Rev Lett, 1960, 5: 361–362

    Article  Google Scholar 

  3. Gill P. Optical frequency standards. Metrologia, 2005, 42: S125–S137

    Article  Google Scholar 

  4. Diddams S A, Bergquist J C, Jefferts S R, et al. Standards of time and frequency at the outset of the 21th century. Science, 2004, 306: 1318–1324

    Article  Google Scholar 

  5. Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock. Nature, 2005, 435: 321–324

    Article  Google Scholar 

  6. Boyd M M, Zelevinsky T, Andrew D, et al. Optical atomic coherence at the 1-second time scale. Science, 2006, 314: 1430–1433

    Article  Google Scholar 

  7. Riehle F. Frequency standards: Basics and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2004

    Google Scholar 

  8. An K, Childs J J, Dasari R R, et al. Microlaser: A laser with one atom in an optical resonator. Phys Rev Lett, 1994, 73: 3375–3378

    Article  Google Scholar 

  9. An K, Feld M S. Semiclassical four-level single-atom laser. Phys Rev A, 1997, 56: 1662–1665

    Article  Google Scholar 

  10. Kuppens S J M, van Exter M P, Woerdman J P. Quantum-limited linewidth of a bad-cavity laser. Phys Rev lett, 1994, 72: 3815–3818

    Article  Google Scholar 

  11. Kolobov M I, Davidovich L, Giacobino E, et al. Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources. Phys Rev A, 1993, 47: 1431–1446

    Article  Google Scholar 

  12. Hils D, Hall J L. Frequency Standards and Metrology. Berlin: Springer-Verlag, 1989. 162–173

    Google Scholar 

  13. Young B C, Cruz F C, Itano W M, et al. Visible lasers with Subhertz linewidths. Phys Rev Lett, 1999, 82: 3799–3802

    Article  Google Scholar 

  14. Notcutt M, Ma L S, Ye J, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt Lett, 2005, 30: 1815–1817

    Article  Google Scholar 

  15. Sterr U, Degenhardt C, Stoehr H, et al. The optical calcium frequency standards of PTB and NIST. ArXiv: physics/0411094

  16. Rafac R J, Young B C, Beall J A, et al. Sub-dekahertz ultraviolet spectroscopy of 199Hg+. Phys Rev Lett, 1999, 85: 2462–2465

    Article  Google Scholar 

  17. Meschede D, Walther H, Mueller G. One atom maser. Phys Rev Lett 1985, 54: 551–554

    Article  Google Scholar 

  18. Siegman A. Laser. Mill Valley CA: University Science Books, 1986

    Google Scholar 

  19. Yariv A. Quantum Electronics. 2nd ed. New York: John Wiley and Sons, 1975

    Google Scholar 

  20. Scully M O, Suessmann G, Benkert C. Quantum noise reduction via maser memory effects: Theory and applications. Phys Rev Lett, 1988, 60: 1014–1017

    Article  Google Scholar 

  21. Ido T, Loftus T H, Boyd M M, et al. Precision spectroscopy and density-dependent frequency shifts in ultracold Sr. Phys Rev Lett, 2005, 94: 153001

    Article  Google Scholar 

  22. An K. Semiclassical theory of the many-atom microlaser. J Korean Phy Soc, 2003, 42: 1–13

    Google Scholar 

  23. Hils D, Faller J E, Hall J L. Practical sound-reducing enclosure for laboratory use. Rev Sci Instrum, 1986, 57: 2532–2534

    Article  Google Scholar 

  24. Scully M O, Walther H, Agarwal G S, et al. Micromaser spectrum. Phys Rev A, 1991, 44: 5992–5996

    Article  Google Scholar 

  25. Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys Rev Lett, 2004, 93: 250602

    Article  Google Scholar 

  26. Kleppner D, Berg H C, Crampton S B, et al. Hydrogen-maser principles and techniques. Phys Rev, 1965, 138: A972–A983

    Article  Google Scholar 

  27. Courtillot I, Quessada A, Kovacich R P, et al. Efficient cooling and trapping of strontium atoms. Opt Lett, 2003, 28: 468–470

    Article  Google Scholar 

  28. Kuppens S J M, van Exter M P, Woerdman J P, et al. Observation of the effect of spectrally inhomogeneous gain on the quantum-limited laser linewidth. Opt Commun, 1996, 126: 79–94

    Article  Google Scholar 

  29. Magno W C, Cavasso Filho R L, Cruz F C. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms. Phys Rev A, 2003, 67: 043407

    Article  Google Scholar 

  30. An K, Dasari R R, Feld M S. Traveling-wave atom cavity interaction in the single-atom microlaser. Opt Lett, 1997, 22: 1500–1502.

    Article  Google Scholar 

  31. Chen J B, Chen X Z. Optical lattice laser. Proceedings of 2005 IEEE International Frequency Control Symposium and Exposition, 2005. 608–610

  32. Chen J B. Active optical clock. http://arxiv.org/abs/physics/0512096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingBiao Chen.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2005CB724500) and National Natural Science Foundation of China (Grant No. 10874009

About this article

Cite this article

Chen, J. Active optical clock. Chin. Sci. Bull. 54, 348–352 (2009). https://doi.org/10.1007/s11434-009-0073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0073-y

Keywords

Navigation