Skip to main content
Log in

Evaluation of mental fatigue based on multipsychophysiological parameters and kernel learning algorithms

  • Articles
  • Bioengineering
  • Published:
Chinese Science Bulletin

Abstract

Mental fatigue is an extremely sophisticated phenomenon, which is influenced by the environment, the state of health, vitality and the capability of recovery. A single parameter cannot fully describe it. In this paper, the effects of long time sustained low-workload visual display terminal (VDT) task on psychology are investigated by subjective self-reporting measures. Then power spectral indices of HRV, the P300 components based on visual oddball and wavelet packet parameters of EEG are combined to analyze the impacts of prolonged visual display terminal (VDT) activity on autonomic nervous system and central nervous system. Finally, wavelet packet parameters of EEG are extracted as the features of brain activity in different mental fatigue states. Kernel principal component analysis (KPCA) and support vector machine (SVM) are jointly applied to differentiate two states. The statistic results show that the level of both subjective sleepiness and fatigue increase significantly from pre-task to post-task, which indicate that the long time VDT task induces the mental fatigue to the subjects. The predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. The P300 components and wavelet packet parameters of EEG are strongly related with mental fatigue. Moreover, the joint KPCA-SVM method is able to effectively reduce the dimensionality of the feature vectors, speed up the convergence in the training of SVM and achieve a high recognition accuracy (87%) of mental fatigue state. Multipsychophysiological measures and KPCA-SVM method could be a promising tool for the evaluation of mental fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konz S. Work/rest: Part II—The scientific basis (knowledge base) for the guide. Int J Ind Ergon, 1998, 22(1): 73–99

    Article  Google Scholar 

  2. Baker K, Olson J, Morisseau D. Work practices, fatigue, and nuclear power plant safety performance. Hum Factors, 1994, 36(2): 244–257

    PubMed  CAS  Google Scholar 

  3. Stern J A, Walrath L C, Goldstein R. The endogenous eyeblink. Psychophysiology, 1984, 21(1): 22–33

    Article  PubMed  CAS  Google Scholar 

  4. Stern J A, Boyer D, Schroeder D. Blink rate: A possible measure of fatigue. Hum Factors, 1994, 36(2): 285–297

    PubMed  CAS  Google Scholar 

  5. Egelund N. Spectral analysis of heart rate variability as an indicator of driver fatigue. Ergonomics, 1982, 25(7): 663–672

    Article  PubMed  CAS  Google Scholar 

  6. Mascord D J, Heath R A. Behavioral and physiological indices of fatigue in a visual tracking task. J Safety Res, 1992, 23(1): 19–25

    Article  Google Scholar 

  7. Hartley L R, Arnold P K, Smythe G, et al. Indicators of fatigue in truck drivers. Appl Ergon, 1994, 25(4): 143–156

    Article  PubMed  CAS  Google Scholar 

  8. Li Z Y, Jiao K, Chen M, et al. Effect of magnitopuncture on sympathetic and parasympathetic nerve activities in healthy drivers—assessment by power spectrum analysis of heart rate variability. Eur J Appl Physiol, 2003, 88(4–5): 404–410

    Article  PubMed  Google Scholar 

  9. Lal S K L, Craig A. A critical review of the psychophysiology of driver fatigue. Biol Psychol, 2001, 55(3): 173–194

    Article  PubMed  CAS  Google Scholar 

  10. Lal S K L, Craig A. electroencephalography activity associated with driver fatigue: Implications for a fatigue countermeasure device. J Psychophysiol, 2001, 15(1): 183–189

    Article  Google Scholar 

  11. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Rev, 1999, 29(2–3): 169–195

    Article  CAS  PubMed  Google Scholar 

  12. Scerbo M, Freeman F G, Mikulka P J. A biocybernetic system for adaptive automation. In: Backs R W, Boucsein W, eds. Engineering Psychophysiology: Issues and Applications. Mahwah: Lawrence Erlbaum Associates, 2000. 241–253

    Google Scholar 

  13. Eoh H J, Chung M K, Kim S H. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int J Ind Ergon, 2005, 35(4): 307–320

    Article  Google Scholar 

  14. Boksem M A S, Lorist M M, Meijman T F. Effects of mental fatigue on attention: An ERP study. Cogn Brain Res, 2005, 25(1): 106–117

    Article  Google Scholar 

  15. Murata A, Uetake A, Takasawa Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential. Int J Ind Ergon, 2005, 35(3): 761–770

    Article  Google Scholar 

  16. Rabiner L, A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc IEEE, 1989, 77(2): 257–286

    Article  Google Scholar 

  17. Andreassi J L. Psychophysiology: Human Behavior and Physiological Response. 3rd ed. Mahwah: Lawrence Erlbaum Associates, 1995

    Google Scholar 

  18. Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy: A new tool for analysis of short duration brain electrical signals. J Neurosci Methods, 2001, 105(1): 65–75

    Article  PubMed  CAS  Google Scholar 

  19. Rosso O A, Martin M T, Plastino A. Brain electrical activity analysis using wavelet based informational tools. Physica A, 2002, 313: 587–609

    Article  CAS  Google Scholar 

  20. Shannon C E. A mathematical theory of communication. Bell System Technical J, 1948, (3–4): 379–423; 623–656

  21. Blanco S, Figliola A, Quian Quiroga R, et al. Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function. Phys Rev E 1998, 57: 932–940

    Article  CAS  Google Scholar 

  22. Kecklund G, Akerstedt T. Sleepiness in a long distance truck driving: An ambulatory EEG study of night driving. Ergonomics, 1993, 36: 1007–1017

    Article  PubMed  CAS  Google Scholar 

  23. Scholkopf B, Smola A J, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput, 1998, 10: 1299–1319

    Article  Google Scholar 

  24. Muller K R, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw, 2001, 12: 181–201

    Article  PubMed  CAS  Google Scholar 

  25. Rosipal R, Girolami M, Trejo L J, et al. Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Comput Appl, 2001, 10(3): 231–243

    Article  Google Scholar 

  26. Garrett D, Peterson D A, Anderson C W, et al. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(2): 141–142

    Article  PubMed  Google Scholar 

  27. Zhang L, Zhou W D, Jiao L C. Wavelet support vector machine. IEEE Trans Syst Man Cybern, 2003, 34(1): 34–35

    Google Scholar 

  28. Hoddes E, Zarcone V, Smythe H, et al. Quantification of sleepiness: A new approach. Psychophysiology, 1973, 10: 431–436

    Article  PubMed  CAS  Google Scholar 

  29. Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci, 1990, 52: 29–37

    Article  PubMed  CAS  Google Scholar 

  30. Samn S W, Perelli L P. Estimating aircrew fatigue: A technique with implications to airlift operations. Brooks AFB, TX: USAF School of Aerospace Medicine. Tech Rep SAM-TR-82-21, 1982

    Google Scholar 

  31. Borg G. Borg’s Perceived Exertion and Pain Scales. Champaign: Human Kinetics, 1998

    Google Scholar 

  32. Miyashita T, Ogawa K, Itoh H, et al. Spectral analyses of electroencephalography and heart rate variability during sleep in normal subjects. Auton Neurosci, 2003, 103: 114–120

    Article  PubMed  Google Scholar 

  33. Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res, 1986, 58: 178–193

    Google Scholar 

  34. Montano N, Ruscone T G, Porta A, et al. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation, 1994, 90: 1826–1831

    PubMed  CAS  Google Scholar 

  35. Pang C C C, Upton A R M, Shine G, et al. A comparison of algorithms for detection of spikes in the electroencephalogram. IEEE Trans Biomed Eng, 2003, 50: 521–526

    Article  PubMed  Google Scholar 

  36. Grandjean E. Fatigue in industry. Br J Intern Med, 1979, 36: 175–186

    CAS  Google Scholar 

  37. Li Z Y, Wang C, Mak A F, et al. Effects of acupuncture on heart rate variability in normal subjects under fatigue and non-fatigue state. Eur J Appl Physiol, 2005, 94: 633–640

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChongXun Zheng.

Additional information

supported by the National Natural Science Foundation of China (Grant No. 30670534)

About this article

Cite this article

Zhang, C., Zheng, C. & Yu, X. Evaluation of mental fatigue based on multipsychophysiological parameters and kernel learning algorithms. Chin. Sci. Bull. 53, 1835–1847 (2008). https://doi.org/10.1007/s11434-008-0245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0245-1

Key words

Navigation