Skip to main content
Log in

TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell

  • Progress
  • Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

To substitute the non-regular nano-crystalline semiconductor for a novel kind of ordered microstructure is a very important aspect in the domain of dye-sensitized solar cell. One of the researching hotspots is the highly-ordered TiO2 nanotube architecture. As a new type of titania nano-material, titania nanotube arrays have drawn extraordinary attention due to its distinctive morphology, notable photoelectrical and hydro-sensitive performance. At 100% sun the new kind of TiO2 nanotube arrays solar cell exhibits an overall conversion efficiency of 5.44%. This paper introduces the preparation methods of titania nanotube arrays, the existing problems and recent progress in titania nanotube arrays solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Regan B O, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(4): 737–739

    Article  Google Scholar 

  2. Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem, 2004, 164: 3–14

    Article  Google Scholar 

  3. Yang S M, Li F Y, Huang C H. Dye sensitized nanocrystalline solar cells. Chemistry Online (in Chinese), 2002, (5): 292–296

  4. Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev, 2003, 4: 145–153

    Article  Google Scholar 

  5. Grätzel M. Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells. C R Chimie, 2006, 9(5–6): 578–583

    Google Scholar 

  6. Grätzel M. The advent of mesoscopic injection solar cells. Prog Photovoltaics, 2006, 14(5): 429–442

    Article  Google Scholar 

  7. Wang M, Yang L, and Zhou X W, et al. A new type quasi-solid state electrolyte for dye-sensitized solar cells. Chin Sci Bull, 2006, 51(13): 1551–1556

    Article  Google Scholar 

  8. Zhang Z, Zhou B X, Ge W J, et al. Charge recombination in dye-sensitized nanoporous TiO2 solar cell. Chin Sci Bull, 2005, 50(21): 2408–2412

    Article  Google Scholar 

  9. Gong D W, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res, 2001, 16(12): 3331–3334

    Article  Google Scholar 

  10. Varghese O K, Gong D W, Paulose M, et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater, 2003, 15(7–8): 624–627

    Article  Google Scholar 

  11. Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B, 2006, 10(33): 16179–16184

    Article  Google Scholar 

  12. Varghese O K, Paulose M, Shankar K, et al. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotech, 2005, 5(7): 1158–1165

    Article  Google Scholar 

  13. Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci & Technol, 2005, 39(10): 3770–3775

    Article  Google Scholar 

  14. Xie Y B, Li X Z. Preparation and characterization of TiO2/Ti film electrodes by anodization at low voltage for photoelectrocatalytic application. J Appl Electrochem, 2006, 36(6): 663–668

    Article  Google Scholar 

  15. Jiang F, Zheng S R, Zheng Z, et al. Photo-degradation of Acid-red 3B dye catalyzed by TiO2 nanotubes. J Environ Sci, 2006, 18(4): 783–787

    Google Scholar 

  16. Macak J M, Tsuchiya H, Ghicov A, et al. Dye-sensitized anodic TiO2 nanotubes. Electrochem Commun, 2005, 7(11): 1133–1137

    Article  Google Scholar 

  17. Ohsaki Y, Masaki N, Kitamura T, et al. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys, 2005, (7): 4157–4163

  18. Mor G K, Karthik S, Maggie Paulose, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6(2): 215–218

    Article  Google Scholar 

  19. Paulose M, Shankar K, Varghese O K, et al. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J Phys D: Appl Phys, 2006, 39(12): 2498–2503

    Article  Google Scholar 

  20. Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells, 2006, 90(14): 2011–2075

    Article  Google Scholar 

  21. Paulose M, Shankar K, Varghese O K, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotech, 2006, 17(5): 1446–1448

    Article  Google Scholar 

  22. Wang H, Yip C T, Cheung K Y, et al. Titania-nanotube-array-based photovoltaic cells. Appl Phys Lett, 2006, 89(2): 023508/1-023508/3

  23. Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett, 2007, 7(1): 69–74

    Article  Google Scholar 

  24. Ma Y T, Lin Y, Xiao X R, et al. Synthesis of TiO2 nanotubes film and its light scattering property. Chin Sci Bull, 2005, 50(18): 1985–1990

    Article  Google Scholar 

  25. Miyauchi M, Tokudome H, Toda Y, et al. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett, 2006, 89: 043114/1-043114/3

  26. Cheng L F, Zhang X T, Liu B, et al. Template synthesis and characterization of WO3/TiO2 composite nanotubes. Nanotechnology, 2005, 16(8): 1341–1345

    Article  Google Scholar 

  27. Lee S, Jeon C, Park Y. Fabrication of TiO2 tubules by template synthesis and hydrolysis with water vapor. Chem Mater, 2004, 16(22): 4292–4295

    Article  Google Scholar 

  28. Lee J H, Leu I C, Hsu M C, et al. Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. J Phys Chem B Lett, 2005, 109(27): 13056–13059

    Article  Google Scholar 

  29. Jung J H, Kobayashi H, Kjeld J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO2 structures. Chem Mater, 2002, 14(4): 1445–1447

    Article  Google Scholar 

  30. Hoyer P. Formation of a titanium dioxide nanotube array. Langmuir, 1996, 12: 1411–1413

    Article  Google Scholar 

  31. Wu S, Jiang Q Z, Ma Z F, et al. TiO2 nanotubes prepared by microwave method. Chin J Inorg Chem (in Chinese), 2006, 22(2): 341–345

    Google Scholar 

  32. Mor G K, Varghese O K, Paulose M, et al. Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res, 2003, 18(11): 2588–2589

    Google Scholar 

  33. Jan M M, Saule A, Andrei G, et al. Smooth anodic TiO2 nanotubes: annealing and structure. Phys Stat Sol, 2006, 203(10): R67–R69

    Article  Google Scholar 

  34. Macak J M, Tsuchiy H, Taveira L, et al. Smooth anodic TiO2 nanotubes. Angew Chem Int ed, 2005, 44(45): 7463–7465

    Article  Google Scholar 

  35. Hiroaki T, Schmuki P. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem Commun, 2005, 7(1): 49–52

    Article  Google Scholar 

  36. Macak J M, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int ed, 2005, 44(14): 2100–2102

    Article  Google Scholar 

  37. Lai Y K, Sun L, Zuo J, et al. Electrochemical fabrication and formation mechanism of TiO2 nanotube arrays on metallic titanium surface. Acta Phys-Chim Sin, 2004, 20(9): 1063–1066

    Google Scholar 

  38. Beranek R, Hildebrand H, Schmuki P. Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-state Lett, 2003, 6(3): B12–B14

    Article  Google Scholar 

  39. Tsuchiya H, Macak J M, Taveira L, et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochem Commun, 2005, 7(6): 576–580

    Article  Google Scholar 

  40. Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun, 2006, 8(8): 1321–1325

    Article  Google Scholar 

  41. Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun, 2005, 7(5): 505–509

    Article  Google Scholar 

  42. Cai Q Y, Paulose M, Varghese O K, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res, 2005, 20(1): 230–236

    Article  Google Scholar 

  43. Zhao J L, Wang X H, Chen R Z, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun, 2005, 134(10): 705–710

    Article  Google Scholar 

  44. Zheng Q, Zhou B X, Bai J, et al. Titanium oxide nanotube arrays and their applications. Progress in Chemistry (in Chinese), 2007, 19(1): 117–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou BaoXue.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20677039), Shanghai Commission for Science and Technology (Grant No. 05nm05004), and the Program of New Century Excellent Talents in University (Grant No. NCET-04-0406)

About this article

Cite this article

Liu, Y., Zhou, B., Xiong, B. et al. TiO2 nanotube arrays and TiO2-nanotube-array based dye-sensitized solar cell. CHINESE SCI BULL 52, 1585–1589 (2007). https://doi.org/10.1007/s11434-007-0254-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0254-5

Keywords

Navigation