Skip to main content
Log in

Synthesis and characterization of two new types of oxovanadium complexes with pyrazole as ligand

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

At room temperature, two new different oxovanadium complexes with simple pyrazole (C3H4N2) as ligand were synthesized. VO(pz)4(SO4). H2O (1) (pz: pyrazole) is a mono-nuclear oxovanadium complex with pyrazole as terminal ligands. V2O2(μ-pz)(μ-OOSO2)(μ-OCH3)(pz)4 (2) is bi-nuclear oxovanadium complex containing three different bridges, which are pyrazolate, sulphate and methoxy, respectively. The two complexes were characterized by IR, elemental analyses, thermal analyses and X-ray diffraction. The crystal structural data of the complexes 1 and 2 are given as follows: Complex 1, orthorhombic, Pna2 1, a=14.547(2) Å, b=10.895(2) Å, c=11.835(2) Å; α=β=γ=90°, V=1875.8(5) Å3, Z=4, R 1=0.0485, wR 2=0.1092. Complex 2, triclinic, \(P\bar 1\), a=8.377(2) Å, b=9.928(2) Å, c=16.527(3) Å, α=85.54(3)°, β=80.92(3)°, γ=87.92(3)°, R 1=0.1461, wR 2=0.4444. The study of non-thermal kinetic decomposition shows that, for complex 1, the possible reaction mechanisms of the two steps are nucleation and growth n=1/3, and three-dimensional pervasion n=2, respectively, and the kinetic equations may be expressed as dα/dT = (A/β)exp(-E/RT){1/3(1-α) [-ln(1-α)]−2} and dα/dT = (A/β)exp(-E/RT){3/2(1-α)2/3 [1-(1-α)1/3]−1}, respectively; for complex 2, the possible reaction mechanisms of the two steps are chemical reaction, and three-dimensional pervasion n=2, respectively; the kinetic equations may be expressed as dα/dT = (A/β)exp(-E/RT)[(1-α)2], and dα/dT = (A/β)exp(-E/RT){3/2(1-α)2/3[1-(1-α)1/3]−1}, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trofimenko S. Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry. Chem Rev, 1993, 93(3): 943–980

    Article  Google Scholar 

  2. Trofimenko S. Coordination chemistry of pyrazole-derived ligands. Chem Rev, 1972, 72(5): 497–509

    Article  Google Scholar 

  3. Mukherjee R. Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects. Coord Chem Rev, 2000, 203(1): 151–218

    Article  Google Scholar 

  4. Trofimenko S. Scorpionates—The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press, 1999. 1–208

    Google Scholar 

  5. Kime-Hunt E, Spartalian K, DeRusha M, et al. Synthesis, characterization, and molecular structures of a series of [(3,5-dimethylpyrazolyl)borato]vanadium(III) and-(IV) complexes. Inorg Chem, 1989, 28(24): 4392–4399

    Article  Google Scholar 

  6. Saka K, Tomita Y, Ue T, et al. Syntheses, antitumor activity, and molecular mechanics studies ofcis-PtCl2(PzH)2 (pzH=pyrazole) and related complexes. Crystalstructure of a novel Magnus-type double-salt [Pt(pzH)4][PtCl4][cis-PtCl2(pzH)2]2 involving two perpendicularly aligned 1D chains. Inorg Chim Acta, 2000, 297(1): 64–71

    Article  Google Scholar 

  7. Machura B, Jaworska M, Kruszynski R. DFT calculation and X-ray structure of the [ReCl3(pzH)3] complex. Polyhedron, 2004, 23(11): 2005–2011

    Article  Google Scholar 

  8. Bieller S, Haghiri A, Bolte M, et al. Transition metal complexes with pyrazole derivatives as ligands. Inorg Chim Acta, 2006, 359(5): 1559–1572

    Article  Google Scholar 

  9. Hvastijova M, Boč R, Kohout J, et al. Cyanamidonitrate-cobalt(II) complexes of pyrazole and imidazole ligands. X-ray structure of [Co(NO2NCN)2(pyrazole)4] and [Co(2-methylimidazole)4] (NO2NCN)2. Inorg Chim Acta, 2003, 343(1): 217–223

    Article  Google Scholar 

  10. Shen W Z, Yi L, Cheng P, et al. Synthesis of a seriour of copper(II)-pyrazolyl complexes in different solvents and anions. Inorg Chem Comm, 2004, 7(7): 819–822

    Article  Google Scholar 

  11. Pfeiffer D, Heeg M J, Winter C H. Synthesis and characterization of calcium complexes containing η2-pyrazolato ligands. Inorg Chem, 2000, 39(11): 2377–2384

    Article  Google Scholar 

  12. Gust K R, Knox H E, Heeg M J, et al. Synthesis, structure, and molecular orbital calculations of (pyrazolato)vanadium(III) complexes-understanding η2-pyrazolato ligand coordination on d2 metal centers. Eur J Inorg Chem, 2002, 9: 2327–2334

    Article  Google Scholar 

  13. Guzei I A, Baboul A G, Yap G P A, et al. Surprising Titanium complexes bearing η2-pyrazolato ligands: synthesis, structure, and molecular orbital studies. J Am Chem Soc, 1997, 119(14): 3387–3388

    Article  Google Scholar 

  14. Hu Z B, Gorun S M. Synthesis and characterization of fluorinated tris(pyrazolyl)borate cComplexes observation of an (η5-Pyrazole) K+ interaction in the solid state. Inorg Chem, 2001, 40(4): 667–671

    Article  Google Scholar 

  15. Rasika D H V, Diyabalanage H V K, Eldabaja M G, et al. Brightly phosphorescent trinuclear copper(I) complexes of pyrazolates: substituent effects on the supermolecular structure and photophysics. J Am Chem Soc, 2005, 127(20): 7489–7501

    Article  Google Scholar 

  16. Brost R D, Bushnell G W, Harrison D G, et al. Pyrazolyl-bridged Iridium dimers. 18.1 influence of metal-metal bonding on the geometry of diiridium(II) adducts and hydrido-diiridium complexes formed from the diiridium(I) prototype [Ir(μ-pz)(PPh3)(CO)]2(pzH) pyrazole) by dihydrogen addition or protonation. Inorg Chem, 2002, 41(6): 1412–1420

    Article  Google Scholar 

  17. Li J, Zhou J H, Li Y Z, et al. Synthesis and structures of two luminescent Zn(II) complexes with pyrazole and carboxylate ligands. Inorg Chem Comm, 2004, 7(4): 538–541

    Article  Google Scholar 

  18. Boixassa A, Pons J, Solans X, et al. New dinuclear Pd(II) complex with pyrazolate bridges. Synthesis and crystal structure of [Pd(μ-pz)(pzH)2]2(BF4)2 (pzH=pyrazole). Inorg Chem Comm, 2003, 6(7): 922–925

    Article  Google Scholar 

  19. Spodine E, Atria A M, Valenzuela J, et al. Magnetic properties of dinuclear copper(II) complexes with simple pyrazolate bridges. J Chem Soc, Dalton Trans, 1999, 17: 3029–3034

    Article  Google Scholar 

  20. Matsushima H, Hamada H, Watanabe K, et al. Magnetic properties and crystal structures of bis(μ-pyrazolato)-bridged dicopper(II,II) complexes with 1,10-phenanthroline or 2,2′-bipyridine. J Chem Soc Dalton Trans, 1999, 6: 971–978

    Article  Google Scholar 

  21. Song Y H, Chi Y, Chen Y L, et al. A study of unsaturated pyrazolate-bridged diruthenium carbonyl complexes. Organometallics, 2002, 21(22): 4735–4742

    Article  Google Scholar 

  22. Yu Z, Wittbrodt J M, Heeg M J, et al. Unusually stable pyrazolate-bridged dialuminum complexes containing bridging methyl groups. J Am Chem Soc, 2000, 122(38): 9338–9339

    Article  Google Scholar 

  23. Sinmanne C T, Knox J E, Heeg M J, et al. Synthesis, structure, bridge-terminal exchange kinetics, and molecular orbital calculations of pyrazolate-bridged digallium complexes containing bridging phenyl groups. J Am Chem Soc, 2003, 125(37): 11152–11153

    Article  Google Scholar 

  24. Escriva E, Garcia-Lozano J, Martinez-Lillo J, et al. Synthesis, crystal structure, magnetic properties, and theoretical studies of [{Cu(mepirizole)Br}2(μ-OH)(μ-pz)] (mepirizole = 4-methoxy-2-(5-methoxy-3-methyl-1H-pyrazol-1-yl)-6-methylpyrimidine; pz = pyrazolate), a novel μ-pyrazolato-μ-hydroxo-dibridged copper(II) complex. Inorg Chem, 2003, 42(25): 8328–8336

    Article  Google Scholar 

  25. Kavlakoglu E, Elmali A, Elerman Y, et al. Magneto-structural characterization of tetranuclear copper(II) complex [Cu4(pz)4L2] (ClO4)(LH=1,3-diamino-2-propanol, Hpz=pyrazole). Polyhedron, 2002, 21(16): 1539–1545

    Article  Google Scholar 

  26. Larkworthy L F, O’Donoghue M W. Ethanolates and heterocyclic amine complexes of vanadium(II). Inorg Chem Acta, 1983, 71(1): 81–86

    Article  Google Scholar 

  27. Jeragh B J A, El-Dissouky A. Synthesis and spectroscopic studies of oxovan adium(IV) and dichlorovanadium(IV) complexes of p-X-phenyl-2-picolylketones. Trans Metal Chem, 2004, 29(6): 579–585

    Google Scholar 

  28. Kosugi M, Hikichi S, Akita M, et al. Inter-and intramolecular hydrogen-bonding interaction of hydroxo groups and steric effect of alkyl substituents on pyrazolyl rings in TpR Ligands: synthesis and structural characterization of chloro-, acetylacetonato-, and hydroxo complexes of VO2+ with TpPri2 and TpMe2 ligands. Inorg Chem, 1999, 38(11): 2567–2578

    Article  Google Scholar 

  29. Collison D, Eardley D R, Mabbs F E, et al. Synthesis, crystallographic and spectroscopic characterization, and magnetic properties of mixed-ligand oxovanadium(IV) hydrotris(3,5-dimethylpyrazolyl) borate complexes. Inorg Chem, 1993, 32(5): 664–671

    Article  Google Scholar 

  30. Beddoes R L, Collison D, Mabbs F E, et al. Synthesis and characterization of some β-diketonate derivatives of hydrotris (3,5-dimethylpyrazolyl)boratooxovanadium(IV). The crystal and molecular. Polyhedron, 1990, 9(20): 2483–2489

    Article  Google Scholar 

  31. Heimer N E, Cleland W E. Structureof (N,N-dipropyldithiocarbamato) [tris(3,5-dimethyl-1-pyrazolyl)hydroborato]oxovanadium (IV). Acta Crystal (C), 1990, C46: 2049–2051

    Google Scholar 

  32. Herberhold M, Frohmader G, Hofmann T, et al. Synthesis and characterization of new hydrotri(3,5-dimethyl-1-pyrazolyl)borate vanadium halfsandwich complexes. Inorg Chim Acta, 1998, 273(1): 19–25

    Article  Google Scholar 

  33. Holmes S, Carrano C J. Models for the binding site in bromoperoxidase: mononuclear vanadium(V) phenolate complexes of the hydridotris(3,5-dimethylpyrazolyl)borate ligand. Inorg Chem, 1991, 30(6): 1231–1235

    Article  Google Scholar 

  34. Carrano C J, Mohan M, Holmes S M, et al. Oxovanadium(V) alkoxo-chloro Complexes of the hydridotripyrazolylborates as models for the binding dite in bromoperoxidase. Inorg Chem, 1994, 33(4): 646–655

    Article  Google Scholar 

  35. Scheuer S, Fischer J, Kress J. Synthesis, structure, and olefin polymerization activity of vanadium(V) catalysts stabilized by imido and hydrotris(pyrazolyl)borato ligands. Organometallics, 1995, 14(6): 2627–2629

    Article  Google Scholar 

  36. Glas H, Herdtweck E, Artus G R J, et al. Chlorination of a pyrazole ligand in vanadium(V)alkoxo complexes. Inorg Chem, 1998, 37(14): 3644–3646

    Article  Google Scholar 

  37. Hu R Z, Shi Q Z. Thermal Analysis Kinetics (in Chinese). Beijing: Science Press, 2001. 47–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Yongheng.

About this article

Cite this article

Xing, Y., Zhang, Y., Xu, Y. et al. Synthesis and characterization of two new types of oxovanadium complexes with pyrazole as ligand. CHINESE SCI BULL 51, 2189–2196 (2006). https://doi.org/10.1007/s11434-006-2085-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2085-1

Keywords

Navigation