Skip to main content
Log in

Electron localization enhanced photon absorption for the missing opacity in solar interior

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The internal solar structure predicted by the standard solar model disagrees with the helioseismic observations even by utilizing the most updated physical inputs, such as the opacity and element abundances. By increasing the Rosseland mean, the decade-old open problem of the missing opacity can be resolved. Herein, we propose that the continuum electrons in the radiative processes lose phases and coherence as matter waves, giving rise to a phenomenon of transient spatial localization. It not only enhances the continuum opacity but also increases the line widths of the bound-bound transitions. We demonstrate our theoretical formulation by investigating the opacity of solar mixtures in the interior. The Rosseland mean demonstrates an increase of 10%–26% in the range of 0.3R–0.75R. The results are compared with the recent experimental data and the existing theoretical models. Our findings provide novel clues to the open problem of the missing opacity in the solar interior and new insight on the radiative opacity in the hot dense-plasma regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Rogers, and C. A. Iglesias, Science 263, 50 (1994).

    Article  ADS  Google Scholar 

  2. S. Basu, and H. M. Antia, Phys. Rep. 457, 217 (2008), arXiv: 0711.4590.

    Article  ADS  Google Scholar 

  3. A. M. Serenelli, S. Basu, J. W. Ferguson, and M. Asplund, Astrophys. J. 705, L123 (2009), arXiv: 0909.2668.

    Article  ADS  Google Scholar 

  4. J. Christensen-Dalsgaard, Living Rev. Sol. Phys. 18, 2 (2021), arXiv: 2007.06488.

    Article  ADS  Google Scholar 

  5. M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Annu. Rev. Astron. Astrophys. 47, 481 (2009), arXiv: 0909.0948.

    Article  ADS  Google Scholar 

  6. M. Asplund, A. M. Amarsi, and N. Grevesse, arXiv: 2105.01661.

  7. J. N. Bahcall, A. M. Serenelli, and M. Pinsonneault, Astrophys. J. 614, 464 (2004), arXiv: astro-ph/0403604.

    Article  ADS  Google Scholar 

  8. H. Saio, Mon. Not. R. Astron. Soc. 258, 491 (1992).

    Article  ADS  Google Scholar 

  9. J. N. Bahcall, S. Basu, M. Pinsonneault, and A. M. Serenelli, Astrophys. J. 618, 1049 (2005), arXiv: astro-ph/0407060.

    Article  ADS  Google Scholar 

  10. J. Christensen-Dalsgaard, M. P. Di Mauro, G. Houdek, and F. Pijpers, Astron. Astrophys. 494, 205 (2009).

    Article  ADS  Google Scholar 

  11. J. E. Bailey, T. Nagayama, G. P. Loisel, G. A. Rochau, C. Blancard, J. Colgan, P. Cosse, G. Faussurier, C. J. Fontes, F. Gilleron, I. Golovkin, S. B. Hansen, C. A. Iglesias, D. P. Kilcrease, J. J. MacFarlane, R. C. Mancini, S. N. Nahar, C. Orban, J. C. Pain, A. K. Pradhan, M. Sherrill, and B. G. Wilson, Nature 517, 56 (2015).

    Article  ADS  Google Scholar 

  12. T. Nagayama, J. E. Bailey, G. P. Loisel, G. S. Dunham, G. A. Rochau, C. Blancard, J. Colgan, P. Cosse, G. Faussurier, C. J. Fontes, F. Gilleron, S. B. Hansen, C. A. Iglesias, I. E. Golovkin, D. P. Kilcrease, J. J. MacFarlane, R. C. Mancini, R. M. More, C. Orban, J. C. Pain, M. E. Sherrill, and B. G. Wilson, Phys. Rev. Lett. 122, 235001 (2019).

    Article  ADS  Google Scholar 

  13. G. A. Rochau, J. E. Bailey, R. E. Falcon, G. P. Loisel, T. Nagayama, R. C. Mancini, I. Hall, D. E. Winget, M. H. Montgomery, and D. A. Liedahl, Phys. Plasmas 21, 056308 (2014).

    Article  ADS  Google Scholar 

  14. C. A. Iglesias, and F. J. Rogers, Astrophys. J. 371, 408 (1991).

    Article  ADS  Google Scholar 

  15. M. J. Seaton, Y. Yan, D. Mihalas, and A. K. Pradhan, Mon. Not. R. Astron. Soc. 266, 805 (1994).

    Article  ADS  Google Scholar 

  16. S. B. Hansen, J. Bauche, C. Bauche-Arnoult, and M. F. Gu, High Energy Density Phys. 3, 109 (2007).

    Article  ADS  Google Scholar 

  17. Q. Porcherot, J. C. Pain, F. Gilleron, and T. Blenski, High Energy Density Phys. 7, 234 (2011), arXiv: 1105.2494.

    Article  ADS  Google Scholar 

  18. C. Blancard, P. Cosse, and G. Faussurier, Astrophys. J. 745, 10 (2012).

    Article  ADS  Google Scholar 

  19. J. Colgan, D. P. Kilcrease, N. H. Magee Jr., G. S. J. Armstrong, J. Abdallah Jr., M. E. Sherrill, C. J. Fontes, H. L. Zhang, and P. Hakel, High Energy Density Phys. 9, 369 (2013).

    Article  ADS  Google Scholar 

  20. J. Zeng, and J. Yuan, Phys. Rev. E 74, 025401 (2006).

    Article  ADS  Google Scholar 

  21. C. A. Iglesias, High Energy Density Phys. 15, 4 (2015).

    Article  ADS  Google Scholar 

  22. D. J. Hoarty, J. Morton, M. Jeffery, L. K. Pattison, A. Wardlow, S. P. D. Mangles, S. J. Rose, C. Iglesias, K. Opachich, R. F. Heeter, and T. S. Perry, High Energy Density Phys. 32, 70 (2019).

    Article  ADS  Google Scholar 

  23. J. C. Pain, and F. Gilleron, High Energy Density Phys. 15, 30 (2015), arXiv: 1503.08939.

    Article  ADS  Google Scholar 

  24. M. Krief, A. Feigel, and D. Gazit, Astrophys. J. 824, 98 (2016), arXiv: 1603.01153.

    Article  ADS  Google Scholar 

  25. C. J. Fontes, C. L. Fryer, A. L. Hungerford, P. Hakel, J. Colgan, D. P. Kilcrease, and M. E. Sherrill, High Energy Density Phys. 16, 53 (2015).

    Article  ADS  Google Scholar 

  26. R. M. More, S. B. Hansen, and T. Nagayama, High Energy Density Phys. 24, 44 (2017).

    Article  ADS  Google Scholar 

  27. J. C. Pain, High Energy Density Phys. 26, 23 (2018), arXiv: 1711.11295.

    Article  ADS  Google Scholar 

  28. M. Krief, Y. Kurzweil, A. Feigel, and D. Gazit, Astrophys. J. 856, 135 (2018).

    Article  ADS  Google Scholar 

  29. J. Colgan, D. P. Kilcrease, N. H. Magee, M. E. Sherrill, J. Abdallah Jr., P. Hakel, C. J. Fontes, J. A. Guzik, and K. A. Mussack, Astrophys. J. 817, 116 (2016), arXiv: 1601.01005.

    Article  ADS  Google Scholar 

  30. C. A. Iglesias, and S. B. Hansen, Astrophys. J. 835, 284 (2017).

    Article  ADS  Google Scholar 

  31. P. Liu, C. Gao, Y. Hou, J. Zeng, and J. Yuan, Commun. Phys. 1, 95 (2018).

    Article  Google Scholar 

  32. S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, Phys. Rev. Lett. 104, 235003 (2010).

    Article  ADS  Google Scholar 

  33. S. H. Glenzer, and R. Redmer, Rev. Mod. Phys. 81, 1625 (2009).

    Article  ADS  Google Scholar 

  34. R. F. Smith, D. E. Fratanduono, D. G. Braun, T. S. Duffy, J. K. Wicks, P. M. Celliers, S. J. Ali, A. Fernandez-Pañella, R. G. Kraus, D. C. Swift, G. W. Collins, and J. H. Eggert, Nat. Astron. 2, 452 (2018).

    Article  ADS  Google Scholar 

  35. C. Gao, J. Zeng, Y. Li, F. Jin, and J. Yuan, High Energy Density Phys. 9, 583 (2013).

    Article  ADS  Google Scholar 

  36. R. K. Janev, S. Zhang, and J. Wang, Matter Radiat. Extrem. 1, 237 (2016).

    Article  Google Scholar 

  37. B. F. Rozsnyai, Phys. Rev. A 5, 1137 (1972).

    Article  ADS  Google Scholar 

  38. M. F. Gu, Can. J. Phys. 86, 675 (2008).

    Article  ADS  Google Scholar 

  39. S. K. Son, R. Thiele, Z. Jurek, B. Ziaja, and R. Santra, Phys. Rev. X 4, 031004 (2014), arXiv: 1404.5484.

    Google Scholar 

  40. Y. Li, J. Wu, Y. Hou, and J. Yuan, J. Phys. B-At. Mol. Opt. Phys. 42, 235701 (2009).

    Article  ADS  Google Scholar 

  41. J. Zeng, Y. Li, C. Gao, and J. Yuan, Astron. Astrophys. 634, A117 (2020).

    Article  ADS  Google Scholar 

  42. J. Zeng, Y. Li, Y. Hou, C. Gao, and J. Yuan, Astron. Astrophys. 644, A92 (2020).

    Article  ADS  Google Scholar 

  43. M. W. C. Dharma-wardana, and R. Taylor, J. Phys. C-Solid State Phys. 14, 629 (1981).

    Article  ADS  Google Scholar 

  44. S. Ichimaru, H. Iyetomi, and S. Tanaka, Phys. Rep. 149, 91 (1987).

    Article  ADS  Google Scholar 

  45. M. J. Seaton, J. Phys. B-At. Mol. Phys. 20, 6431 (1987).

    Article  ADS  Google Scholar 

  46. Z. Zhao, J. Yuan, and Y. Sun, Chin. Phys. Lett. 16, 885 (1999).

    Article  ADS  Google Scholar 

  47. J. Zeng, Y. Li, and J. Yuan, J. Quant. Spectr. Radiat. Transfer 272, 107777 (2021).

    Article  Google Scholar 

  48. J. Zeng, Y. Li, and J. Yuan, Mon. Not. R. Astron. Soc. 504, 4785 (2021).

    Article  ADS  Google Scholar 

  49. J. N. Bahcall, and R. K. Ulrich, Rev. Mod. Phys. 60, 297 (1988).

    Article  ADS  Google Scholar 

  50. D. B. Guenther, P. Demarque, Y. C. Kim, and M. H. Pinsonneault, Astrophys. J. 387, 372 (1992).

    Article  ADS  Google Scholar 

  51. J. Zeng, and J. Yuan, Phys. Rev. E 76, 026401 (2007).

    Article  ADS  Google Scholar 

  52. M. S. Dimitrijević, and N. Konjević, Astron. Astrophys. 172, 345 (1987).

    ADS  Google Scholar 

  53. N. R. Badnell, M. A. Bautista, K. Butler, F. Delahaye, C. Mendoza, P. Palmeri, C. J. Zeippen, and M. J. Seaton, Mon. Not. R. Astron. Soc. 360, 458 (2005), arXiv: astro-ph/0410744.

    Article  ADS  Google Scholar 

  54. C. A. Iglesias, and F. J. Rogers, Astrophys. J. 464, 943 (1996).

    Article  ADS  Google Scholar 

  55. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.-Condens. Matter 29, 465901 (2017), arXiv: 1709.10010.

    Article  Google Scholar 

  56. Y. Hou, and J. Yuan, Phys. Rev. E 79, 016402 (2009).

    Article  ADS  Google Scholar 

  57. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  58. J. J. Boland, S. E. Crane, and J. D. Baldeschwieler, J. Chem. Phys. 77, 142 (1982).

    Article  ADS  Google Scholar 

  59. C. del Burgo, and C. Allende Prieto, Mon. Not. R. Astron. Soc. 479, 1953 (2018), arXiv: 2106.10752.

    Article  ADS  Google Scholar 

  60. J. T. Bueno, and N. Shchukina, Astrophys. J. 694, 1364 (2009), arXiv: 0812.3494.

    Article  ADS  Google Scholar 

  61. T. M. Brown, and J. Christensen-Dalsgaard, Astrophys. J. 500, L195 (1998), arXiv: astro-ph/9803131.

    Article  ADS  Google Scholar 

  62. F. L. Villante, and B. Ricci, Astrophys. J. 714, 944 (2010), arXiv: 0912.4696.

    Article  ADS  Google Scholar 

  63. J. Christensen-Dalsgaard, W. Däppen, S. V. Ajukov, E. R. Anderson, H. M. Antia, S. Basu, V. A. Baturin, G. Berthomieu, B. Chaboyer, S. M. Chitre, A. N. Cox, P. Demarque, J. Donatowicz, W. A. Dziembowski, M. Gabriel, D. O. Gough, D. B. Guenther, J. A. Guzik, J. W. Harvey, F. Hill, G. Houdek, C. A. Iglesias, A. G. Kosovichev, J. W. Leibacher, P. Morel, C. R. Proffitt, J. Provost, J. Reiter, E. J. Rhodes Jr., F. J. Rogers, I. W. Roxburgh, M. J. Thompson, and R. K. Ulrich, Science 272, 1286 (1996).

    Article  ADS  Google Scholar 

  64. The Borexino Collaboration, Nature 587, 577 (2020), arXiv: 2006.15115.

    Article  ADS  Google Scholar 

  65. Q. Ma, J. Dai, D. Kang, M. S. Murillo, Y. Hou, Z. Zhao, and J. Yuan, Phys. Rev. Lett. 122, 015001 (2019).

    Article  ADS  Google Scholar 

  66. G. S. Bisnovatyi-Kogan, and M. V. Glushikhina, Plasma Phys. Rep. 44, 1114 (2018), arXiv: 1902.01156.

    Article  ADS  Google Scholar 

  67. K. Fukushima, and Y. Hidaka, Phys. Rev. Lett. 120, 162301 (2018), arXiv: 1711.01472.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiaoLong Zeng or JianMin Yuan.

Additional information

This work was supported by the Science Challenge Project (Grant No. TZ2018005), the National Key R&D Program of China (Grant Nos. 2019YFA0307700, and 2017YFA0403202), and the National Natural Science Foundation of China (Grant Nos. 12174343, and 11774322).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Gao, C., Liu, P. et al. Electron localization enhanced photon absorption for the missing opacity in solar interior. Sci. China Phys. Mech. Astron. 65, 233011 (2022). https://doi.org/10.1007/s11433-021-1812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1812-1

Keywords

Navigation