Skip to main content
Log in

Strong decays of the Pcs(4459) as a \(\Xi_{c}\bar{D}^{\ast}\) molecule

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this work, we study the strong decay of the newly observed Pcs(4459), assuming that it is a pure \(\Xi_{c}\bar{D}^{\ast}\) molecular state. Considering two possible spin-parity assignments JP = 1/2 and JP = 3/2, the partial decay widths of the \(\Xi_{c}\bar{D}^{\ast}\) molecular state into J/ψΛ, D s Λ +c , and \(\bar{D}\Xi_{c}^{(\prime)}\) final states through hadronic loops are evaluated with the help of the effective Lagrangians. In comparison with the LHCb data, the S-wave \(\bar{D}^{\ast}\Xi_{c}\) molecular with JP = 1/2 assignment for Pcs(4459) is supported by our study, while the Pcs(4459) in spin-parity JP = 3/2 case may be explained as an S-wave coupled bound state with lager \(\Xi_{c}\bar{D}^{\ast}\) component. In addition, the calculated partial decay widths with JP = 1/2 \(\Xi_{c}\bar{D}^{\ast}\) molecular state picture indicate that allowed decay mode, \(\bar{D}^{\ast}\Xi_{c}^{\prime}\), may have the biggest branching ratio. The experimental measurements for this strong decay process could be a crucial test for the molecule interpretation of the Pcs(4459).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Zyla, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

    Article  Google Scholar 

  2. R. Aaij, et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 222001 (2019).

    Article  ADS  Google Scholar 

  3. R. Aaij, et al. (LHCb Collaboration), Sci. Bull. 66, 1278 (2021).

    Article  Google Scholar 

  4. J. J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. C 84, 015202 (2011), arXiv: 1011.2399.

    Article  ADS  Google Scholar 

  5. B. Wang, L. Meng, and S. L. Zhu, Phys. Rev. D 101, 034018 (2020), arXiv: 1912.12592.

    Article  ADS  Google Scholar 

  6. V. V. Anisovich, M. A. Matveev, J. Nyiri, A. V. Sarantsev, and A. N. Semenova, Int. J. Mod. Phys. A 30, 1550190 (2015), arXiv: 1509.04898.

    Article  ADS  Google Scholar 

  7. Z. G. Wang, Eur. Phys. J. C 76, 142 (2016).

    Article  ADS  Google Scholar 

  8. A. Feijoo, V. K. Magas, A. Ramos, and E. Oset, Eur. Phys. J. C 76, 446 (2016), arXiv: 1512.08152.

    Article  ADS  Google Scholar 

  9. J. X. Lu, E. Wang, J. J. Xie, L. S. Geng, and E. Oset, Phys. Rev. D 93, 094009 (2016), arXiv: 1601.00075.

    Article  ADS  Google Scholar 

  10. R. Chen, J. He, and X. Liu, Chin. Phys. C 41, 103105 (2017), arXiv: 1609.03235.

    Article  ADS  Google Scholar 

  11. C. W. Xiao, J. Nieves, and E. Oset, Phys. Lett. B 799, 135051 (2019), arXiv: 1906.09010.

    Article  Google Scholar 

  12. H. X. Chen, L. S. Geng, W. H. Liang, E. Oset, E. Wang, and J. J. Xie, Phys. Rev. C 93, 065203 (2016), arXiv: 1510.01803.

    Article  ADS  Google Scholar 

  13. Z. G. Wang, Int. J. Mod. Phys. A 36, 2150071 (2021), arXiv: 2011.05102.

    Article  ADS  Google Scholar 

  14. K. Azizi, Y. Sarac, and H. Sundu, Phys. Rev. D 103, 094033 (2021), arXiv: 2101.07850.

    Article  ADS  Google Scholar 

  15. F. Z. Peng, M. J. Yan, M. Sánchez Sánchez, and M. Pavon Valderrama, Eur. Phys. J. C 81, 666 (2021), arXiv: 2011.01915.

    Article  ADS  Google Scholar 

  16. H. X. Chen, W. Chen, X. Liu, and X. H. Liu, Eur. Phys. J. C 81, 409 (2021), arXiv: 2011.01079.

    Article  ADS  Google Scholar 

  17. R. Chen, Phys. Rev. D 103, 054007 (2021), arXiv: 2011.07214.

    Article  ADS  Google Scholar 

  18. J. T. Zhu, L. Q. Song, and J. He, Phys. Rev. D 103, 074007 (2021), arXiv: 2101.12441.

    Article  ADS  Google Scholar 

  19. J. X. Lu, M. Z. Liu, R. X. Shi, and L. S. Geng, Phys. Rev. D 104, 034022 (2021), arXiv: 2104.10303.

    Article  ADS  Google Scholar 

  20. C. J. Xiao, Y. Huang, Y. B. Dong, L. S. Geng, and D. Y. Chen, Phys. Rev. D 100, 014022 (2019), arXiv: 1904.00872.

    Article  ADS  Google Scholar 

  21. Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 77, 094013 (2008), arXiv: 0802.3610.

    Article  ADS  Google Scholar 

  22. Y. Dong, A. Faessler, T. Gutsche, Q. Lü, and V. E. Lyubovitskij, Phys. Rev. D 96, 074027 (2017), arXiv: 1705.09631.

    Article  ADS  Google Scholar 

  23. C. J. Xiao, and D. Y. Chen, Eur. Phys. J. A 53, 127 (2017), arXiv: 1603.00228.

    Article  ADS  Google Scholar 

  24. M. Cleven, Q. Wang, F. K. Guo, C. Hanhart, U. G. Meißner, and Q. Zhao, Phys. Rev. D 90, 074039 (2014), arXiv: 1310.2190.

    Article  ADS  Google Scholar 

  25. H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092.

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Branz, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 80, 054019 (2009), arXiv: 0903.5424.

    Article  ADS  Google Scholar 

  27. A. Faessler, T. Gutsche, V. E. Lyubovitskij, and Y. L. Ma, Phys. Rev. D 76, 014005 (2007), arXiv: 0705.0254.

    Article  ADS  Google Scholar 

  28. Y. Dong, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D 81, 014006 (2010), arXiv: 0910.1204.

    Article  ADS  Google Scholar 

  29. S. Weinberg, Phys. Rev. 130, 776 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Salam, Nuovo. Cim. 25, 224 (1962).

    Article  ADS  Google Scholar 

  31. J. A. Oller, Ann. Phys. 396, 429 (2018), arXiv: 1710.00991.

    Article  ADS  Google Scholar 

  32. Z. H. Guo, and J. A. Oller, Phys. Rev. D 93, 096001 (2016), arXiv: 1508.06400.

    Article  ADS  Google Scholar 

  33. R. Chen, Eur. Phys. J. C 81, 122 (2021), arXiv: 2101.10614.

    Article  ADS  Google Scholar 

  34. W. Liu, C. Ko, and Z. Lin, Phys. Rev. C 65, 015203 (2001), arXiv: nucl-th/0107058.

    Article  ADS  Google Scholar 

  35. Y. Huang, and L. Geng, Eur. Phys. J. C 80, 837 (2020), arXiv: 2006.06227.

    Article  ADS  Google Scholar 

  36. H. Yukawa, Proc. Phys. Math. Soc. Jap. 17, 48 (1935) [Prog. Theor. Phys. Suppl 1, 1 (1935)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongQiang Zhu.

Additional information

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800510), the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2017KF19). Yin Huang wants to thank the support from the Development and Exchange Platform for the Theoretic Physics of Southwest Jiaotong University (Grant Nos. 11947404, and 12047576), Fundamental Research Funds for the Central Universities (Grant No. 2682020CX70), and National Natural Science Foundation of China (Grant No. 12005177).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Huang, Y. & Zhu, H. Strong decays of the Pcs(4459) as a \(\Xi_{c}\bar{D}^{\ast}\) molecule. Sci. China Phys. Mech. Astron. 64, 121011 (2021). https://doi.org/10.1007/s11433-021-1796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1796-0

PACS number(s)

Navigation