Skip to main content
Log in

Quantum federated learning through blind quantum computing

Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Private distributed learning studies the problem of how multiple distributed entities collaboratively train a shared deep network with their private data unrevealed. With the security provided by the protocols of blind quantum computation, the cooperation between quantum physics and machine learning may lead to unparalleled prospect for solving private distributed learning tasks. In this paper, we introduce a quantum protocol for distributed learning that is able to utilize the computational power of the remote quantum servers while keeping the private data safe. For concreteness, we first introduce a protocol for private single-party delegated training of variational quantum classifiers based on blind quantum computing and then extend this protocol to multiparty private distributed learning incorporated with differential privacy. We carry out extensive numerical simulations with different real-life datasets and encoding strategies to benchmark the effectiveness of our protocol. We find that our protocol is robust to experimental imperfections and is secure under the gradient attack after the incorporation of differential privacy. Our results show the potential for handling computationally expensive distributed learning tasks with privacy guarantees, thus providing a valuable guide for exploring quantum advantages from the security perspective in the field of machine learning with real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature 549, 195 (2017), arXiv: 1611.09347.

    Article  ADS  Google Scholar 

  2. V. Dunjko, and H. J. Briegel, Rep. Prog. Phys. 81, 074001 (2018).

    Article  ADS  Google Scholar 

  3. S. Das Sarma, D. L. Deng, and L. M. Duan, Phys. Today 72, 48 (2019), arXiv: 1903.03516.

    Article  Google Scholar 

  4. S. J. Russell, and P. Norvig, Artificial Intelligence: A Modern Approach (Pearson, Hoboken, 2020).

    MATH  Google Scholar 

  5. Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436 (2015).

    Article  ADS  Google Scholar 

  6. M. I. Jordan, and T. M. Mitchell, Science 349, 255 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Nature 529, 484 (2016).

    Article  ADS  Google Scholar 

  8. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, Nature 550, 354 (2017).

    Article  ADS  Google Scholar 

  9. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu, and D. Hassabis, Nature 577, 706 (2020).

    Article  ADS  Google Scholar 

  10. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev. Mod. Phys. 91, 045002 (2019), arXiv: 1903.10563.

    Article  ADS  Google Scholar 

  11. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Nature 574, 505 (2019), arXiv: 1910.11333.

    Article  ADS  Google Scholar 

  12. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. Liu, C.-Y. Lu, and J.-W. Pan, Science 370, 1460 (2020).

    Article  ADS  Google Scholar 

  13. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).

    MATH  Google Scholar 

  14. A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), arXiv: 0811.3171.

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Lloyd, M. Mohseni, and P. Rebentrost, Nat. Phys. 10, 631 (2014), arXiv: 1307.0401.

    Article  Google Scholar 

  16. V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Nature 567, 209 (2019), arXiv: 1804.11326.

    Article  ADS  Google Scholar 

  17. M. Schuld, and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019).

    Article  ADS  Google Scholar 

  18. X. Gao, Z. Y. Zhang, and L. M. Duan, Sci. Adv. 4, eaat9004 (2018).

    Article  ADS  Google Scholar 

  19. S. Lloyd, and C. Weedbrook, Phys. Rev. Lett. 121, 040502 (2018), arXiv: 1804.09139.

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, and L. Sun, Sci. Adv. 5, eaav2761 (2019), arXiv: 1808.02893.

    Article  ADS  Google Scholar 

  21. P. Rebentrost, M. Mohseni, and S. Lloyd, Phys. Rev. Lett. 113, 130503 (2014), arXiv: 1307.0471.

    Article  ADS  Google Scholar 

  22. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, Science 335, 303 (2012), arXiv: 1110.1381.

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Broadbent, J. Fitzsimons, and E. Kashefi, in Universal blind quantum computation: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science (IEEE, Atlanta, 2009), pp. 517–526.

    MATH  Google Scholar 

  24. A. M. Childs, arXiv: quant-ph/0111046.

  25. J. F. Fitzsimons, and E. Kashefi, Phys. Rev. A 96, 012303 (2017).

    Article  ADS  Google Scholar 

  26. G. Zhang, Y. Liu, J. J. Raftery, and A. A. Houck, npj Quantum Inf. 3, 1 (2017), arXiv: 1603.01224.

    Article  ADS  Google Scholar 

  27. V. Giovannetti, L. Maccone, T. Morimae, and T. G. Rudolph, Phys. Rev. Lett. 111, 230501 (2013), arXiv: 1306.2724.

    Article  ADS  Google Scholar 

  28. T. Morimae, and K. Fujii, Phys. Rev. Lett. 111, 020502 (2013), arXiv: 1302.3786.

    Article  ADS  Google Scholar 

  29. Y.-B. Sheng, and L. Zhou, Sci. Rep. 5, 7815 (2015).

    Article  Google Scholar 

  30. F. Zerka, S. Barakat, S. Walsh, M. Bogowicz, R. T. H. Leijenaar, A. Jochems, B. Miraglio, D. Townend, and P. Lambin, JCO Clin. Cancer Inf. 2017, 184 (2020).

    Google Scholar 

  31. A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. L. Aerts, Nat. Rev. Cancer 18, 500 (2018).

    Article  Google Scholar 

  32. M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay, Y. Wang, A. M. Dai, Z. Chen, T. Sohn, and Y. Wu, in Gmail smart compose: Real-time assisted writing: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD’ 19 (Association for Computing Machinery, New York, 2019), pp. 2287–2295.

    Book  Google Scholar 

  33. J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, arXiv: 1610.05492.

  34. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, Communication-Efficient Learning of Deep Networks from Decentralized Data: Artificial Intelligence and Statistics (PMLR, Ft. Lauderdale, 2017), pp. 1273–1282.

    Google Scholar 

  35. C. Dwork, Theory and Applications of Models of Computation, Lecture Notes in Computer Science, edited by M. Agrawal, D. Du, Z. Duan, and A. Li (Springer, Berlin, Heidelberg, 2008), pp. 1–19.

  36. C. Dwork, and A. Roth, FNT Theor. Comput. Sci. 9, 211 (2014).

    Article  Google Scholar 

  37. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, in Deep learning with differential privacy: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Association for Computing Machinery, New York, 2016), pp. 308–318.

    Book  Google Scholar 

  38. Y. Huang, Z. Song, K. Li, and S. Arora, in InstaHide: Instance-hiding schemes for private distributed learning: Proceedings of the International Conference on Machine Learning (PMLR, 2020), pp. 4507–4518.

  39. R. Bassily, A. Smith, and A. Thakurta, in Private empirical risk minimization: Efficient algorithms and tight error bounds: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (IEEE, Philadelphia, 2014), pp. 464–473.

    Book  Google Scholar 

  40. A. Beimel, H. Brenner, S. P. Kasiviswanathan, and K. Nissim, Mach. Learn. 94, 401 (2014).

    Article  MathSciNet  Google Scholar 

  41. C. Gentry, in Fully homomorphic encryption using ideal lattices: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC’ 09 (Association for Computing Machinery, New York, 2009), pp. 169–178.

    Book  Google Scholar 

  42. Y. B. Sheng, and L. Zhou, Sci. Bull. 62, 1025 (2017).

    Article  Google Scholar 

  43. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, arXiv: 2012.09265.

  44. Y. Liu, S. Arunachalam, and K. Temme, arXiv: 2010.02174.

  45. S. Lu, L. M. Duan, and D. L. Deng, Phys. Rev. Res. 2, 033212 (2020), arXiv: 2001.00030.

    Article  Google Scholar 

  46. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Phys. Rev. A 98, 032309 (2018), arXiv: 1803.00745.

    Article  ADS  Google Scholar 

  47. J. Li, X. Yang, X. Peng, and C. P. Sun, Phys. Rev. Lett. 118, 150503 (2017), arXiv: 1608.00677.

    Article  ADS  Google Scholar 

  48. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Phys. Rev. A 99, 032331 (2019), arXiv: 1811.11184.

    Article  ADS  Google Scholar 

  49. L. Zhu, Z. Liu, and S. Han, Federated Learning: Privacy and Incentive (Springer, Cham, 2020), pp. 17–31.

    Book  Google Scholar 

  50. Y. LeCun, C. Cortes, and C. Burges, Mnist Handwritten Digit Database (1998).

  51. W. H. Wolberg, N. Street, and O. L. Mangasarian, UCI Machine Learning Repository: Breast Cancer Wisconsin (Diagnostic) Data Set (1992).

  52. A. Dusko, A. Delgado, A. Saraiva, and B. Koiller, npj Quantum Inf. 4, 1 (2018), arXiv: 1712.03195.

    Article  ADS  Google Scholar 

  53. I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273 (2019), arXiv: 1810.03787.

    Article  Google Scholar 

  54. D. P. Kingma, and J. Ba, arXiv: 1412.6980.

  55. Y. Du, M.-H. Hsieh, T. Liu, D. Tao, and N. Liu, arXiv: 2003.09416.

  56. H. L. Huang, Q. Zhao, X. Ma, C. Liu, Z. E. Su, X. L. Wang, L. Li, N. L. Liu, B. C. Sanders, C. Y. Lu, and J. W. Pan, Phys. Rev. Lett. 119, 050503 (2017), arXiv: 1707.00400.

    Article  ADS  Google Scholar 

  57. A. Mantri, T. F. Demarie, N. C. Menicucci, and J. F. Fitzsimons, Phys. Rev. X 7, 031004 (2017), arXiv: 1608.04633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ling Deng.

Additional information

This work was supported by the start-up fund from Tsinghua University (Grant No. 53330300320), the National Natural Science Foundation of China (Grant No. 12075128), and the Shanghai Qi Zhi Institute. We thank Haoyu Guo, Wenjie Jiang, Zhide Lu, and Peixin Shen for helpful discussions.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lu, S. & Deng, DL. Quantum federated learning through blind quantum computing. Sci. China Phys. Mech. Astron. 64, 100312 (2021). https://doi.org/10.1007/s11433-021-1753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1753-3

Navigation