Skip to main content
Log in

The intrinsic nature of materials failure and the global non-equilibrium energy criterion

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Materials failure under some sort of loading is a well-known natural phenomenon, and the reliable prediction of materials failure is the most important key issue for many different kinds of engineering structures based on their safety considerations. In this research, instead of establishing empirical models, the material failure process was modeled as a nonequilibrium process based on the microstructural mechanism. Then, the evolution equations were established and the stability analysis was carried out to obtain the critical conditions for the materials failure. It was found that the material strength was a global property in nature, and the commonly used local criteria based on the most dangerous point failure were not the rational assumption. Based on the idea, some examples were considered, such as the size effect of the material strength, the strength of the polycrystalline metals, the stress-strain relationship of the ultrafine crystalline metal with nanoscale growth twins, the strength of lithium niobite crystal specimens with notches. All of the theoretical predictions gave reasonable results compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith, Phil. Trans. R. Soc. Lond. A 221, 163 (1921).

    Article  ADS  Google Scholar 

  2. K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).

    Article  ADS  Google Scholar 

  3. R. H. Telling, C. J. Pickard, M. C. Payne, and J. E. Field, Phys. Rev. Lett. 84, 5160 (2000).

    Article  ADS  Google Scholar 

  4. D. Kondepudi, and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (John Wiley & Sons, Chichester, 2014).

    Book  Google Scholar 

  5. Z. P. Bažant, Archive Appl. Mech. (Ingenieur Archiv) 69, 703 (1999).

    Article  ADS  Google Scholar 

  6. A. Taloni, M. Vodret, G. Costantini, and S. Zapperi, Nat. Rev. Mater. 3, 211 (2018).

    Article  ADS  Google Scholar 

  7. B. Sun, Dimensinal Analysis and Lie Group (in Chinese) (China High Education Press, Beijing, 2016).

    Google Scholar 

  8. Z. P. Bažant, I. M. Daniel, and Z. Li, J. Eng. Mater. Tech. 118, 317 (1996).

    Article  Google Scholar 

  9. C. C. Vu, J. Weiss, O. Plé, D. Amitrano, and D. Vandembroucq, J. Mech. Phys. Solids 121, 47 (2018).

    Article  ADS  Google Scholar 

  10. P. B. Zdeněk, and M. T. Kazemi, J. Am. Cream. Soc. 73, 1841 (1990).

    Article  Google Scholar 

  11. S. Bandis, A. C. Lumsden, and N. R. Barton, Int. J. Rock Mech. Min. Sci. GeoMech. Abstracts 18, 1 (1981).

    Article  Google Scholar 

  12. B. Wang, and J. P. Boehler, J. Mech. Phys. Solids 44, 2103 (1996).

    Article  ADS  Google Scholar 

  13. T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publisher, Dordrecht, Boston, London, 1987).

    Book  Google Scholar 

  14. C. Unger, and W. Klein, Phys. Rev. B 29, 2698 (1984).

    Article  ADS  Google Scholar 

  15. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).

    Article  ADS  Google Scholar 

  16. Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Science 362, 6414 (2018).

    Google Scholar 

  17. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Nature 464, 877 (2010).

    Article  ADS  Google Scholar 

  18. M. Dao, L. Lu, Y. F. Shen, and S. Suresh, Acta Mater. 54, 5421 (2006).

    Article  ADS  Google Scholar 

  19. B. Clausen, T. Lorentzen, and T. Leffers, Acta Mater. 46, 3087 (1998).

    Article  ADS  Google Scholar 

  20. R. A. Masumura, P. M. Hazzledine, and C. S. Pande, Acta Mater. 46, 4527 (1998).

    Article  ADS  Google Scholar 

  21. M. Liu, Y. Gan, D. A. H. Hanaor, B. Liu, and C. Chen, Eng. Fract. Mech. 149, 134 (2015).

    Article  Google Scholar 

  22. G. R. Irwin, ASME J. Appl. Mech. 24, 109 (1957).

    Google Scholar 

  23. J. Chen, B. Wang, and Y. Hu, J. Mech. Phys. Solids 107, 451 (2017), arXiv: 1610.01467.

    Article  ADS  MathSciNet  Google Scholar 

  24. J. P. Chen, and B. Wang, Sci. China-Phys. Mech. Astron. 62, 954611 (2019).

    Article  Google Scholar 

  25. W. Yang, H. T. Wang, T. F. Li, and S. X. Qu, Sci. China-Phys. Mech. Astron. 62, 014601 (2019).

    Article  Google Scholar 

  26. R. F. Zhang, C. L. Ren, J. W. Feng, and Y. Q. Ma, Sci. China-Phys. Mech. Astron. 62, 117012 (2019), arXiv: 1903.06387.

    Article  ADS  Google Scholar 

  27. K. M. Liew, Z. Pan, and L. W. Zhang, Sci. China-Phys. Mech. Astron. 63, 234601 (2020).

    Article  Google Scholar 

  28. Y. Sun, K. Y. Zeng, and T. Li, Sci. China-Phys. Mech. Astron. 63, 278701 (2020).

    Article  Google Scholar 

  29. Z. Wu, S. Huang, J. Ding, W. Wang, and X. Luo, Sci. China-Phys. Mech. Astron. 61, 114712 (2018).

    Article  ADS  Google Scholar 

  30. F. Berto, and P. Lazzarin, Mat. Sci. Eng. R 75, 1 (2014).

    Article  Google Scholar 

  31. C. C. Yang, and Y.-W. Mai, Mat. Sci. Eng. R 79, 1 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11832019, 11472313, and 13572355). Dr. JiaPeng Chen, my former PhD student, and now my post-doctoral associate helped me to carry out the detail calculation shown in Figure 5, and help me to draw the Figures 6 and 9, and Mr. Jun Hui, my PhD student, helped me to collect the data and draw the Figures 1–4. The author appreciated their help very much.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B. The intrinsic nature of materials failure and the global non-equilibrium energy criterion. Sci. China Phys. Mech. Astron. 63, 124611 (2020). https://doi.org/10.1007/s11433-020-1610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1610-8

Keywords

Navigation