Skip to main content
Log in

Structural transition dynamics of the formation of warm dense gold: From an atomic scale view

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

With the highly optimized embedded-atom-method (EAM) potential and electron-phonon coupling factor obtained from experimental data, the dynamics of the formation of warm dense gold and the nuclear response of gold foils upon intense laser excitation were investigated using two-temperature molecular dynamics simulations. Considering laser energy densities ranging from 0.18 to 1.17 MJ/kg, we provide a microscopic picture of the formation of warm dense gold. A threshold (0.19 MJ/kg) for the laser energy density was determined, identifying two different melting mechanisms. For an energy density below 0.19 MJ/kg, the melting of the foil is controlled by the propagation of melt fronts from external surfaces, which results in heterogeneous melting on the time scale of hundreds of picoseconds. For an energy density above 0.19 MJ/kg, homogeneous nucleation and growth of liquid regions inside the foil play the leading role, and homogeneous melting occurs with several picoseconds. Compared with previous simulations and experimental measurements, the evaluated different threshold value indicates that the improvement in the electron heat capacity for the two-temperature model by including the kinetic information of electrons may predict better laser-matter interactions under such extreme non-equilibrium conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    ADS  Google Scholar 

  2. A. L. Kritcher, P. Neumayer, J. Castor, T. Doppner, R. W. Falcone, O. L. Landen, H. J. Lee, R. W. Lee, E. C. Morse, A. Ng, S. Pollaine, D. Price, and S. H. Glenzer, Science 322, 69 (2008).

    ADS  Google Scholar 

  3. X. J. Wang, D. Xiang, T. K. Kim, and H. Ihee, J. Korean Phys. Soc. 48, 390 (2006).

    Google Scholar 

  4. J. B. Hastings, F. M. Rudakov, D. H. Dowell, J. F. Schmerge, J. D. Car-doza, J. M. Castro, S. M. Gierman, H. Loos, and P. M. Weber, Appl. Phys. Lett. 89, 184109 (2006).

    ADS  Google Scholar 

  5. R. Li, C. Tang, Y. Du, W. Huang, Q. Du, J. Shi, L. Yan, and X. Wang, Rev. Sci. Instrum. 80, 083303 (2009).

    ADS  Google Scholar 

  6. P. Musumeci, J. T. Moody, C. M. Scoby, M. S. Gutierrez, and M. West-fall, Appl. Phys. Lett. 97, 063502 (2010).

    ADS  Google Scholar 

  7. M. Z. Mo, Z. Chen, R. K. Li, M. Dunning, B. B. L. Witte, J. K. Baldwin, L. B. Fletcher, J. B. Kim, A. Ng, R. Redmer, A. H. Reid, P. Shekhar, X. Z. Shen, M. Shen, K. Sokolowski-Tinten, Y. Y. Tsui, Y. Q. Wang, Q. Zheng, X. J. Wang, and S. H. Glenzer, Science 360, 1451 (2018).

    ADS  Google Scholar 

  8. L. X. Benedict, J. N. Glosli, D. F. Richards, F. H. Streitz, S. P. Hau-Riege, R. A. London, F. R. Graziani, M. S. Murillo, and J. F. Benage, Phys. Rev. Lett. 102, 205004 (2009).

    ADS  Google Scholar 

  9. Q. Ma, J. Dai, D. Kang, M. S. Murillo, Y. Hou, Z. Zhao, and J. Yuan, Phys. Rev. Lett. 122, 015001 (2019).

    ADS  Google Scholar 

  10. M. Harb, R. Ernstorfer, C. T. Hebeisen, G. Sciaini, W. Peng, T. Darti-galongue, M. A. Eriksson, M. G. Lagally, S. G. Kruglik, and R. J. D. Miller, Phys. Rev. Lett. 100, 155504 (2008).

    ADS  Google Scholar 

  11. D. S. Ivanov, and L. V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007).

    ADS  Google Scholar 

  12. Z. Lin, and L. V. Zhigilei, Phys. Rev. B 73, 184113 (2006).

    ADS  Google Scholar 

  13. S. Mazevet, J. Clérouin, V. Recoules, P. M. Anglade, and G. Zerah, Phys. Rev. Lett. 95, 085002 (2005).

    ADS  Google Scholar 

  14. D. S. Ivanov, and L. V. Zhigilei, Phys. Rev. B 68, 064114 (2003).

    ADS  Google Scholar 

  15. J. Zhang, X. Cheng, N. He, and G. Yan, J. Phys.-Condens. Matter 30, 085401 (2018).

    ADS  Google Scholar 

  16. Y. H. Huang, C. W. Song, J. J. Zhang, and T. Sun, Sci. China-Phys. Mech. Astron. 58, 1 (2015).

    Google Scholar 

  17. M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66, 025401 (2002).

    ADS  Google Scholar 

  18. J. Dai, D. Kang, Z. Zhao, Y. Wu, and J. Yuan, Phys. Rev. Lett. 109, 175701 (2012).

    ADS  Google Scholar 

  19. S. X. Hu, B. Militzer, V. N. Goncharov, and S. Skupsky, Phys. Rev. Lett. 104, 235003 (2010).

    ADS  Google Scholar 

  20. D. Kang, and J. Dai, J. Phys.-Condens. Matter 30, 073002 (2018).

    ADS  Google Scholar 

  21. M. Lindenblatt, and E. Pehlke, Phys. Rev. Lett. 97, 216101 (2006).

    ADS  Google Scholar 

  22. M. Mo, S. Murphy, Z. Chen, P. Fossati, R. Li, Y. Wang, X. Wang, and S. Glenzer, Sci. Adv. 5, eaaw0392 (2019).

    ADS  Google Scholar 

  23. H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118 (2011).

    ADS  Google Scholar 

  24. B. Holst, V. Recoules, S. Mazevet, M. Torrent, A. Ng, Z. Chen, S. E. Kirkwood, V. Sametoglu, M. Reid, and Y. Y. Tsui, Phys. Rev. B 90, 035121 (2014).

    ADS  Google Scholar 

  25. T. Q. Qiu, and C. L. Tien, J. Heat Transfer 115, 835 (1993).

    Google Scholar 

  26. I. M. Lifshitz, M. Y. Azbel, and M. I. Kaganov, Zh. Eksp. Teor. Fiz 31, 63 (1956).

    Google Scholar 

  27. S. I. Anisimov, B. L. Kapeliovich, T. L. Perelman, Zh. Eksp. Teor. Fiz 66, 375 (1974).

    Google Scholar 

  28. D. M. Duffy, and A. M. Rutherford, J. Phys.-Condens. Matter 19, 016207 (2007).

    ADS  Google Scholar 

  29. S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, Appl Phys A 69, S99 (1999).

    Google Scholar 

  30. J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, and E. Matthias, Chem. Phys. 251, 237 (2000).

    Google Scholar 

  31. Z. Chen, M. Mo, L. Soulard, V. Recoules, P. Hering, Y. Y. Tsui, S. H. Glenzer, and A. Ng, Phys. Rev. Lett. 121, 075002 (2018).

    ADS  Google Scholar 

  32. Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid, Y. Y. Tsui, V. Recoules, and A. Ng, Phys. Rev. Lett. 110, 135001 (2013).

    ADS  Google Scholar 

  33. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    ADS  Google Scholar 

  34. A. M. Rutherford, and D. M. Duffy, J. Phys.-Condens. Matter 19, 496201 (2007).

    Google Scholar 

  35. J. K. Chen, D. Y. Tzou, and J. E. Beraun, Int. J. Heat Mass Transfer 49, 307 (2006).

    Google Scholar 

  36. G. E. Norman, S. V. Starikov, V. V. Stegailov, I. M. Saitov, and P. A. Zhilyaev, Contrib. Plasma Phys. 53, 129 (2013).

    ADS  Google Scholar 

  37. V. V. Pisarev, and S. V. Starikov, J. Phys.-Condens. Matter 26, 475401 (2014).

    ADS  Google Scholar 

  38. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    ADS  Google Scholar 

  39. W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, and K. Mecke, J. Chem. Phys. 138, 044501 (2013).

    ADS  Google Scholar 

  40. Y. Wang, S. Teitel, and C. Dellago, J. Chem. Phys. 122, 214722 (2005).

    ADS  Google Scholar 

  41. C. Chakravarty, P. G. Debenedetti, and F. H. Stillinger, J. Chem. Phys. 126, 204508 (2007).

    ADS  Google Scholar 

  42. F. Calvo, and D. J. Wales, J. Chem. Phys. 131, 134504 (2009).

    ADS  Google Scholar 

  43. Z. H. Jin, P. Gumbsch, K. Lu, and E. Ma, Phys. Rev. Lett. 87, 055703 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaYu Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Dai, J. Structural transition dynamics of the formation of warm dense gold: From an atomic scale view. Sci. China Phys. Mech. Astron. 63, 263011 (2020). https://doi.org/10.1007/s11433-019-1466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1466-2

Keywords

Navigation