Skip to main content
Log in

Measurement-device-independent quantum key distribution with hyper-encoding

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Measurement device-independent quantum key distribution (MDI-QKD) protocols are immune to all possible attacks on the photon detectors during quantum communication, but their key generation rates are low compared with those of other QKD schemes. Increasing each individual photon’s channel capacity is an efficient way to increase the key generation rate, and high-dimensional (HD) encoding is a powerful tool for increasing the channel capacity of photons. In this paper, we propose an HD MDI-QKD protocol with qudits hyper-encoded in spatial mode and polarization degrees of freedom (DOFs). In the proposed protocol, keys can be generated using the spatial mode and polarization DOFs simultaneously. The proposed protocol is unconditionally secure, even for weak coherent pulses with decoy states. The proposed MDI-QKD protocol may be useful for future quantum secure communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175–179.

    Google Scholar 

  2. A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

    ADS  MathSciNet  Google Scholar 

  3. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys. Rev. Lett. 88, 127902 (2002).

    ADS  Google Scholar 

  4. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, New J. Phys. 4, 41 (2002).

    ADS  Google Scholar 

  5. W. Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).

    ADS  Google Scholar 

  6. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, Nature 421, 238 (2003).

    ADS  Google Scholar 

  7. H. K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005).

    ADS  Google Scholar 

  8. X. Ma, B. Qi, Y. Zhao, and H. K. Lo, Phys. Rev. A 72, 012326 (2005).

    ADS  Google Scholar 

  9. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, Phys. Rev. Lett. 98, 010504 (2007).

    ADS  Google Scholar 

  10. B. K. Park, M. S. Lee, M. K. Woo, Y. S. Kim, S. W. Han, and S. Moon, Sci. China-Phys. Mech. Astron. 60, 060311 (2017).

    ADS  Google Scholar 

  11. F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, arXiv: 1903.09051 (2019).

  12. M. Hillery, V. Bužek, and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

    ADS  MathSciNet  Google Scholar 

  13. Y. G. Yang, Z. C. Liu, X. B. Chen, Y. H. Zhou, and W. M. Shi, Sci. China-Phys. Mech. Astron. 60, 120311 (2017).

    ADS  Google Scholar 

  14. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

    ADS  Google Scholar 

  15. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003).

    ADS  Google Scholar 

  16. F. G. Deng, and G. L. Long, Phys. Rev. A 69, 052319 (2004).

    ADS  Google Scholar 

  17. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Phys. Rev. Lett. 118, 220501 (2017), arXiv: 1609.09184.

    ADS  Google Scholar 

  18. F. Zhu, W. Zhang, Y. Sheng, and Y. Huang, Sci. Bull. 62, 1519 (2017).

    Google Scholar 

  19. F. Z. Wu, G. J. Yang, H. B. Wang, J. Xiong, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120313 (2017).

    ADS  Google Scholar 

  20. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Sci. China-Phys. Mech. Astron. 61, 090312 (2018).

    Google Scholar 

  21. Y. X. Jiang, P. L. Guo, C. Y. Gao, H. B. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Sci. China-Phys. Mech. Astron. 60, 120312 (2017), arXiv: 1804.00873.

    ADS  Google Scholar 

  22. F. Wang, M. X. Luo, G. Xu, X. B. Chen, and Y. X. Yang, Sci. China-Phys. Mech. Astron. 61, 060312 (2018).

    Google Scholar 

  23. H. Lo, and H. F. Chau, Science 283, 2050 (1999).

    ADS  Google Scholar 

  24. N. Lütkenhaus, Phys. Rev. A 61, 052304 (2000).

    ADS  Google Scholar 

  25. P. W. Shor, and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

    ADS  Google Scholar 

  26. D. Mayers, J. ACM 48, 351 (2001).

    MathSciNet  Google Scholar 

  27. D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Quant. Inf. Comput. 4, 325 (2004).

    Google Scholar 

  28. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009), arXiv: 0802.4155.

    ADS  Google Scholar 

  29. B. Qi, C. H. F. Fung, H. K. Lo, and X. F. Ma, Quant. Inf. Comput. 7, 73 (2007).

    Google Scholar 

  30. Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H. K. Lo, Phys. Rev. A 78, 042333 (2008), arXiv: 0704.3253.

    ADS  Google Scholar 

  31. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Phys. Rev. Lett. 107, 110501 (2011), arXiv: 1103.2327.

    ADS  Google Scholar 

  32. V. Makarov, and D. R. Hjelme, J. Modern Opt. 52, 691 (2005).

    ADS  Google Scholar 

  33. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006).

    ADS  Google Scholar 

  34. V. Makarov, New J. Phys. 11, 065003 (2009).

    ADS  Google Scholar 

  35. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon 4, 686 (2010), arXiv: 1008.4593.

    ADS  Google Scholar 

  36. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

    ADS  Google Scholar 

  37. S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, New J. Phys. 11, 045021 (2009), arXiv: 0903.4460.

    ADS  Google Scholar 

  38. L. Masanes, S. Pironio, and A. Acín, Nat. Commun. 2, 238 (2011), arXiv: 1009.1567.

    ADS  Google Scholar 

  39. U. Vazirani, and T. Vidick, Phys. Rev. Lett. 113, 140501 (2014).

    ADS  Google Scholar 

  40. H. K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012), arXiv: 1109.1473.

    ADS  Google Scholar 

  41. Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 111, 130502 (2013), arXiv: 1209.6178.

    ADS  Google Scholar 

  42. Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H. K. Lo, Phys. Rev. Lett. 112, 190503 (2014), arXiv: 1306.6134.

    ADS  Google Scholar 

  43. Y. L. Tang, H. L. Yin, S. J. Chen, Y. Liu, W. J. Zhang, X. Jiang, L. Zhang, J. Wang, L. X. You, J. Y. Guan, D. X. Yang, Z. Wang, H. Liang, Z. Zhang, N. Zhou, X. Ma, T. Y. Chen, Q. Zhang, and J. W. Pan, Phys. Rev. Lett. 113, 190501 (2014), arXiv: 1407.8012.

    ADS  Google Scholar 

  44. H. L. Yin, T. Y. Chen, Z. W. Yu, H. Liu, L. X. You, Y. H. Zhou, S. J. Chen, Y. Mao, M. Q. Huang, W. J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X. B. Wang, and J. W. Pan, Phys. Rev. Lett. 117, 190501 (2016), arXiv: 1606.06821.

    ADS  Google Scholar 

  45. F. Xu, M. Curty, B. Qi, and H. K. Lo, New J. Phys. 15, 113007 (2013), arXiv: 1305.6965.

    ADS  Google Scholar 

  46. M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, Nat. Commun. 5, 3732 (2014), arXiv: 1307.1081.

    ADS  Google Scholar 

  47. C. Wang, X. T. Song, Z. Q. Yin, S. Wang, W. Chen, C. M. Zhang, G. C. Guo, and Z. F. Han, Phys. Rev. Lett. 115, 160502 (2015).

    ADS  Google Scholar 

  48. C. Wang, Z. Q. Yin, S. Wang, W. Chen, G. C. Guo, and Z. F. Han, Optica 4, 1016 (2017).

    ADS  Google Scholar 

  49. A. Ferenczi, and N. Lütkenhaus, Phys. Rev. A 85, 052310 (2012), arXiv: 1112.3396.

    ADS  Google Scholar 

  50. Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 112, 120506 (2014), arXiv: 1311.0825.

    ADS  Google Scholar 

  51. P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Nat. Commun. 7, 11712 (2016), arXiv: 1510.01294.

    ADS  Google Scholar 

  52. H. F. Chau, C. Wong, Q. Wang, and T. Huang, arXiv: 1608.08329 (2016).

  53. L. Dellantonio, A. S. Sorensen, and D. Bacco, Phys. Rev. A 98, 062301 (2018), arXiv: 1809.04405.

    ADS  Google Scholar 

  54. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. OBrien, A. Gilchrist, and A. G. White, Nat. Phys. 5, 134 (2009), arXiv: 0804.0272.

    Google Scholar 

  55. M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, and J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013), arXiv: 1306.1141.

    ADS  Google Scholar 

  56. P. G. Kwiat, and H. Weinfurter, Phys. Rev. A 58, R2623 (1998).

    ADS  Google Scholar 

  57. Y. B. Sheng, F. G. Deng, and G. L. Long, Phys. Rev. A 82, 032318 (2010), arXiv: 1103.0230.

    ADS  Google Scholar 

  58. X. B. Wang, Phys. Rev. Lett. 94, 230503 (2005).

    ADS  Google Scholar 

  59. H. Inamori, Algorithmica 34, 340 (2002).

    MathSciNet  Google Scholar 

  60. P. van Loock, Laser Photon. Rev. 5, 167 (2011), arXiv: 1002.4788.

    ADS  Google Scholar 

  61. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, Sci. China-Phys. Mech. Astron. 60, 120314 (2017).

    Google Scholar 

  62. X. Y. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, Nat. Phys. 15, 373 (2019), arXiv: 1805.04011.

    Google Scholar 

  63. X. H. Li, and S. Ghose, Opt. Express 24, 18388 (2016), arXiv: 1601.02032.

    ADS  Google Scholar 

  64. G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Opt. Express 27, 8994 (2019).

    ADS  Google Scholar 

  65. Q. Liu, G. Y. Wang, Q. Ai, M. Zhang, and F. G. Deng, Sci. Rep. 6, 22016 (2016), arXiv: 1511.00094.

    ADS  Google Scholar 

  66. M. Wang, F. Yan, and T. Gao, Laser Phys. Lett. 15, 125206 (2018).

    ADS  Google Scholar 

  67. X. H. Li, and S. Ghose, Phys. Rev. A 93, 022302 (2016), arXiv: 1601.02029.

    ADS  Google Scholar 

  68. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

    ADS  Google Scholar 

  69. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B-Quantum Semiclass. Opt. 5, 218 (2003).

    ADS  Google Scholar 

  70. C. Zhu, and G. Huang, Opt. Express 19, 23364 (2011).

    ADS  Google Scholar 

  71. I. C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan, L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing, and C. M. Wilson, Phys. Rev. Lett. 111, 053601 (2013), arXiv: 1207.1203.

    ADS  Google Scholar 

  72. B. He, A. V. Sharypov, J. Sheng, C. Simon, and M. Xiao, Phys. Rev. Lett. 112, 133606 (2014), arXiv: 1401.1540.

    ADS  Google Scholar 

  73. K. M. Beck, M. Hosseini, Y. Duan, and V. Vuleticí, Proc. Natl. Acad. Sci. USA 113, 9740 (2016), arXiv: 1512.02166.

    ADS  Google Scholar 

  74. D. Tiarks, S. Schmidt, G. Rempe, and S. Dürr, Sci. Adv. 2, e1600036 (2016), arXiv: 1512.05740.

    ADS  Google Scholar 

  75. J. Sinclair, D. Angulo, N. Lupu-Gladstein, K. Bonsma-Fisher, and A. M. Steinberg, arXiv: 1906.05151v1.

  76. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Opt. Express 20, 24664 (2012), arXiv: 1207.0168.

    ADS  Google Scholar 

  77. T. J. Wang, Y. Lu, and G. L. Long, Phys. Rev. A 86, 042337 (2012).

    ADS  Google Scholar 

  78. G. Y. Wang, Q. Ai, B. C. Ren, T. Li, and F. G. Deng, Opt. Express 24, 28444 (2016), arXiv: 1611.03352.

    ADS  Google Scholar 

  79. Q. Liu, and M. Zhang, Phys. Rev. A 91, 062321 (2015), arXiv: 1507.06108.

    ADS  Google Scholar 

  80. T. J. Wang, and C. Wang, Sci. Rep. 6, 19497 (2016).

    ADS  Google Scholar 

  81. X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Nature 518, 516 (2015).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11974189), the China Postdoctoral Science Foundation (Grant No. 2018M642293), the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (Grant No. JZNY201908), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Norbert Lütkenhaus very much for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, ZX., Zhong, W., Zhou, L. et al. Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019). https://doi.org/10.1007/s11433-019-1438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1438-6

Keywords

PACS number(s)

Navigation