Skip to main content
Log in

Study of the cavity-magnon-polariton transmission line shape

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton (CMP) created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. While fixed field measurements are found to have the expected Lorentzian characteristic, at fixed frequencies the field swept line shape is in general asymmetric. Such fixed frequency measurements demonstrate that microwave transmission can be used to access magnetic characteristics of the CMP, such as the field line width ΔH. By developing an effective oscillator model of the microwave transmission we show that these line shape features are general characteristics of harmonic coupling. At the same time, at the classical level the underlying physical mechanism of the CMP is electrodynamic phase correlation and a second model based on this principle also accurately reproduces the experimental line shape features. In order to understand the microscopic origin of the effective coupled oscillator model and to allow for future studies of CMP phenomena to extend into the quantum regime, we develop a third, microscopic description, based on a Green’s function formalism. Using this method we calculate the transmission spectra and find good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Mills, and E. Burstein, Reports Prog. Phys. 37, 817 1974.

    Article  ADS  Google Scholar 

  2. H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Phys. Rev. Lett. 111, 127003 2013.

    Article  ADS  Google Scholar 

  3. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. Lett. 113, 083603 2014.

    Article  ADS  Google Scholar 

  4. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Phys. Rev. Lett. 113, 156401 2014.

    Article  ADS  Google Scholar 

  5. L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C. M. Hu, Phys. Rev. Lett. 114, 227201 2015.

    Article  ADS  Google Scholar 

  6. Y. Cao, P. Yan, H. Huebl, S. T. B. Goennenwein, and G. E. W. Bauer, Phys. Rev. B 91, 094423 2015.

    Article  ADS  Google Scholar 

  7. M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, Phys. Rev. Appl. 2, 054002 2014.

    Article  ADS  Google Scholar 

  8. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaka, K. Usami, and Y. Nakamura, arXiv: 1508.05290

  9. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Science 349, 405 2015.

    Article  ADS  MathSciNet  Google Scholar 

  10. J. A. Haigh, N. J. Lambert, A. C. Doherty, and A. J. Ferguson, Phys. Rev. B 91, 104410 2015.

    Article  ADS  Google Scholar 

  11. B. Z. Rameshti, Y. Cao, and G. E. W. Bauer, Phys. Rev. B 91, 214430 2015.

    Article  ADS  Google Scholar 

  12. L. Bai, K. Blanchette, M. Harder, Y. Chen, X. Fan, J. Xiao, and C. M. Hu, IEEE Trans. Magn. 52, 100107 2016.

    Google Scholar 

  13. N. J. Lambert, J. A. Haigh, and A. J. Ferguson, J. Appl. Phys. 117, 053910 2015.

  14. N. J. Lambert, J. A. Haigh, S. Langenfeld, A. C. Doherty, and A. J. Ferguson, Phys. Rev. A 93, 021803 2016.

    Article  ADS  Google Scholar 

  15. C. M. Hu, arXiv:1508.01966.

  16. A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Phys. Rev. Lett. 116, 223601 2016.

    Article  ADS  Google Scholar 

  17. J. A. Haigh, S. Langenfeld, N. J. Lambert, J. J. Baumberg, A. J. Ramsay, A. Nunnenkamp, and A. J. Ferguson, Phys. Rev. A 92, 063845 2015.

    Article  ADS  Google Scholar 

  18. X. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, arXiv:1510.03545.

  19. J. Bourhill, N. Kostylev, M. Goryachev, D. Creedon, and M. Tobar, Phys. Rev. B 93, 144420 2016.

    Article  ADS  Google Scholar 

  20. B. M. Yao, Y. S. Gui, Y. Xiao, H. Guo, X. S. Chen, W. Lu, C. L. Chien, and C. M. Hu, Phys. Rev. B. 92, 184407 2015.

    Article  ADS  Google Scholar 

  21. X. Zhang, C. L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, Nat. Commun. 6, 8914 2015.

    Article  ADS  Google Scholar 

  22. H. M. Flaig, M. Harder, R. Gross, H. Huebl, and S. Goennenwein, arXiv:1601.05681.

  23. Ö. O. Soykal, and M. E. Flatté, Phys. Rev. Lett. 104, 077202 2010.

    Article  ADS  Google Scholar 

  24. Ö. O. Soykal, and M. E. Flatté, Phys. Rev. B 82, 104413 2010.

    Article  ADS  Google Scholar 

  25. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Sci. Adv. 2, e1501286 (2016).

    Article  ADS  Google Scholar 

  26. A. Wirthmann, X. Fan, Y. S. Gui, K. Martens, G.Williams, J. Dietrich, G. E. Bridges, and C. M. Hu, Phys. Rev. Lett. 105, 017202 2010.

    Article  ADS  Google Scholar 

  27. M. Harder, Z. X. Cao, Y. S. Gui, X. L. Fan, and C. M. Hu, Phys. Rev. B 84, 054423 2011.

    Article  ADS  Google Scholar 

  28. A. Azevedo, L. H. Vilela-Leão, R. L. Rodríguez-Suárez, A. F. L. Santos, and S. M. Rezende, Phys. Rev. B 83, 144402 2011.

    Article  ADS  Google Scholar 

  29. D. F. Walls, and G. J. Milburn, Quantum Optics (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  30. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 2010.

    Article  ADS  MathSciNet  Google Scholar 

  31. L. D. Landau, and E. M. Lifshitz, Mechanics (Elsevier, Amsterdam, 1976).

    MATH  Google Scholar 

  32. D. M. Pozar, Microwave Engineering (John Wiley & Sons, Inc, Nork York, 2005).

    Google Scholar 

  33. A. Kreisel, F. Sauli, L. Bartosch, and P. Kopietz, Eur. Phys. J. B 71, 59 (2009).

    Article  ADS  Google Scholar 

  34. B. M. Garraway, Philos. Trans. A. Math. Phys. Eng. Sci. 369, 1137 2011.

    Article  ADS  MathSciNet  Google Scholar 

  35. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  36. R. Chirla, A. Manolescu, and C. P. Moca, Phys. Rev. B 93, 155110 2016.

    Article  ADS  Google Scholar 

  37. P. J. Petersan, and S. M. Anlage, J. Appl. Phys. 84, 3392 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Harder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harder, M., Bai, L., Match, C. et al. Study of the cavity-magnon-polariton transmission line shape. Sci. China Phys. Mech. Astron. 59, 117511 (2016). https://doi.org/10.1007/s11433-016-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0228-6

Keywords

PACS number(s)

Navigation